| NAGH- CR-/EFAT5

SOFTWARE ENGINEERING LABORATORY SERIES

o/
s / -
7

=S

S e SO

P ‘;/‘}?
/-,1 b}
P

SEL-92-002

DATA COLLECTION PROCEDURES
FOR THE SOFTWARE ENGINEERING

LABORATORY (SEL) DATABASE

NASA__

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

MARCH 1992

. oAt
3 14

Y

- CR898%5

(.

L)

Do eew bemewe Taw DR MM T b DR - JOUN.....BSEHR . Y LM VUG o WM. e e BMRIG. s

SOFTWARE ENGINEERING LABORATORY SERIES SEL-92-002

DATA COLLECTION PROCEDURES
FOR THE SOFTWARE ENGINEERING
LABORATORY (SEL) DATABASE

MARCH 1992

NNS

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the
National Aeronautics and Space Administration/Goddard Space Flight Center
(NASA/GSFC) and created to investigate the effectiveness of software engineering
technologies when applied to the development of applications software. The SEL was
created in 1976 and has three primary organizational members:

NASA/GSFC, Systems Development Branch
University of Maryland, Department of Computer Science
Computer Sciences Corporation, Systems Development Operation

The goals of the SEL are (1) to understand the software development process in the
GSFC environment; (2) to measure the effect of various methodologies, tools, and
models on this process; and (3) to identify and then to apply successful development
practices. The activities, findings, and recommendations of the SEL are recorded in the
Software Engineering Laboratory Series, a continuing series of reports that includes
this document.

The major contributors to this document are

Gerard Heller (Computer Sciences Corporation)
Jon Valett (NASA/GSFC)
Mary Wild (Computer Sciences Corporation)

Single copies of this document can be obtained by writing to

Systems Development Branch
Code 552

Goddard Space Flight Center
Greenbelt, Maryland 20771

BAGE__ [\ iHikiiiuiALLY BLANK
1
6201 PRECEDING PAGE BLAWK NOT FILMED

ABSTRACT

This document is a guidebook to collecting software engineering data on software de-
velopment and maintenance efforts, as practiced in the Software Engineering Labora-
tory (SEL). It supersedes the document entitled Data Collection Procedures for the
Rehosted SEL Database, number SEL-87-008 in the SEL series, which was published in
October 1987. It presents an overview of SEL data collection and the types of data the
SEL collects. It then presents procedures to be followed on software development and
maintenance projects in the Flight Dynamics Division (FDD) of Goddard Space Flight
Center (GSFC) for collecting data in support of SEL software engineering research ac-
tivities. These procedures include detailed instructions for the completion and submis-
sion of SEL data collection forms.

m“ai.__-l\/ IR SRS S R e ,

PRECEL: |/
o RING [o FLMED

Table of Contents

Section 1—Introduction 1-1
Section 2—Overview of SEL Data Collection 2-1
2.1 Data Collectedbythe SEL 2-1
2.2 Howthe SEL Collects Data 2-2
2.3 Managing the Data Collection Process 2-9
Section 3—Data Collection in the Development Life Cycle 3-1
3.1 Project Startupi it e 3-1
3.1.1 Project Startup Form (PSF) 3-2
3.1.2 Project Estimates Form (PEF) 3-6
3.2 Data Collection During Development 3-12
321 RateData it 3-12

3.2.1.1 Personnel Resources Form (PRF) and
Cleanroom Personnel Resources

Form (CLPRF) 3-12
3.2.1.2 Development Status Form (DSF) 3-19
3.2.1.3 Services/Products Form (SPF) 3-25
322 EventData i i, 3-32
3.22.1 Subsystem Information Form (SIF) 3-32
3.22.2 Component Origination Form (COF) 3-36
3223 Component Change Form (CCF).......... 3-42
3.224 Change Report Form (CRF).............. 3-44
3.22.5 Project Messages Form (PMF) 3-55
33 Project Completion i il 3-55
331 Project Completion Statistics Form (PCSF) 3-58
332 Subjective Evaluation Form (SEF) 3-65
Section 4—Data Collection in Maintenance 4-1
4.1 Transition to Maintenance 0., 4-1
7 X ity
wﬁ‘yﬂl""m!i“ E.‘!v . E.;f\n'.; 4 B; Ao vu
6201

PRECEDING a0 T30 2] st

Table of Contents (Continued)

4.2 Data Collection During Maintenance
4.2.1 Maintenance Rate Data
42.1.1 Weekly Maintenance Effort Form
(WMEF),
4212 GrowthData...........................
422 Maintenance EventData
422.1 Maintenance Change Report Form
(MCRF) ...
4222 Project Messages
Appendix—SEL Forms
Glossary
References

Standard Bibliography of SEL Literature

viii
6201

List of Illustrations

Figure

3-10
3-11
3-12
3-13
3-14
3-15
3-16

4-2

6201

SEL Forms CollectedbyPhase 2-10

Communication Paths in Monitoring SEL Data Collection ... 2-11

ProjectStartupForm oL 3-3

Project Estimates Form 3-7

Personnel ResourcesForm 3-13
Personnel Resources Form (Cleanroom Version) 3-14
Development Status Form 3-20
Preprinted DSFfor Update 3-21
Services/Products Form L. 3-26
Sample Page From Data Collection Status Report 3-29
Subsystem InformationForm 3-33
Component OriginationForm 3-37
Component Change Form 3-43
ChangeReportForm i 3-45
Project Messages Form 3-56
Sample SAPPrintout i 3-58
Project Completion Statistics Form 3-61
Subjective EvaluationForm 3-66
Weekly Maintenance Effort Form 4-4

Maintenance Change Report Form 4-9

X

List of Tables

Table

6201

High-Level Classification of SEL Data Types 2-2
Estimate Data 2-3
ProductData.......... 2-4
ResourcesData 2-5
ProcessData, 2-6
Change Error/Data 2-7
AnnotationData, 2-7
SEL Data CollectionForms 2-8
SEL Phase Definitions 3-9
X

SECTION 1—INTRODUCTION

The Software Engineering Laboratory (SEL) was established in 1976 to perform
research in the measurement and evaluation of the software development process.
Over the years, the SEL has collected and analyzed data from nearly 100 software
development projects in the Goddard Space Flight Center (GSFC) Flight Dynamics
Division (FDD). These data have been used to study both the processes and the prod-
ucts of such development efforts and to evaluate the impact of methodologies, tools,
and technologies. In recent years, the SEL has expanded the scope of its activities to
include the study of software maintenance and has begun collecting and analyzing data
on this phase of the software life cycle.

Fundamental to the research activities of the SEL is the collection of data on develop-
ment and maintenance projects in the FDD environment. A general introduction to
the collection of software engineering data is provided in the SEL Guide to Data Collec-
tion (Reference 1). That document discusses the motivation for collecting data, the
philosophy behind deciding what to collect, resources required, estimated costs, and
data management issues. This document is intended to augment that earlier work with
an updated overview of the types of data collected by the SEL and detailed procedures
for collecting those data.

This document is intended to serve three audiences with overlapping needs. One audi-
ence encompasses those who want an overview of the types of data that the SEL collects
and how it goes about collecting them. Another audience consists of software man-
agers, developers, and maintainers working on projects being monitored by the SEL. In
addition to an overview of the data collection process, members of this audience need
specific information about their roles in that process. Thus, the document discusses
how and when to complete and submit the various data collection forms used by the
SEL,; explains how final statistics are determined at project completion; and provides
detailed instructions for completing each form. It also gives guidelines as to what
communication must regularly take place between monitored projects and SEL data
collection personnel. Finally, the document serves as a companion to SEL researchers
who need to understand the origins of the data with which they work.

The remainder of the document is organized into three major sections:

e Section 2 provides an overview of the types of data collected from a SEL-
monitored development or maintenance project and introduces the mecha-
nisms by which they are collected.

e Section 3 details the data collection process for development projects from
startup through system delivery. It also discusses when the data are needed
(periodically or keyed to specific events) and whether they are submitted by
developers or automatically monitored by the SEL. Samples of the 13 SEL
forms associated with development and instructions for how and when to
complete them are included.

1-1
6201

6201

Section 4 discusses the transition from development to maintenance and data
collection during maintenance. Again, when the data are needed and who
provides them are discussed. Samples of the two SEL forms associated with
maintenance and instructions for how and when to complete them are
included.

The Appendix contains samples of all SEL data collection forms discussed in
this document.

SECTION 2—OVERVIEW OF SEL DATA COLLECTION

This section introduces software engineering data collection as practiced in the SEL.
Section 2.1 presents a conceptual overview of the data the SEL collects. This overview
is illustrated as a hierarchy of data types and subtypes. The data types in the hierarchy
are mapped to the hardcopy forms the SEL uses to collect them.

Section 2.2 presents high-level SEL data collection concepts. It introduces the forms
that are central to the SELs data collection efforts. It categorizes the data collected on
the forms with respect to their origin, collection mechanism, and collection frequency.
It also summarizes the major data collection activities performed over the software
life cycle.

Section 2.3 discusses managing the data collection process, including concepts for
validation and feedback of the data.

Note that those discussions represent the practice of data collection as exercised at the
time this document was published. The underlying principles guiding the data
collection efforts will remain fairly constant. Detailed data collection models,
however, are subject to change as life cycles and methodologies evolve, as new
technologies replace existing ones, and as the focus of SEL software engineering
research activities shifts. Section 2.3 concludes, therefore, with a brief discussion of
adapting data collection procedures to meet changing needs.

2.1 DATA COLLECTED BY THE SEL

The basic entity about which the SEL collects data is the project. For each project the
SEL monitors, it collects data that characterize various aspects of the project’s software
life cvcle. These aspects include the problem the system is intended to solve, the process
followed in solving it, the end product produced, the environment in which that product
is developed, and the resources expended along the way. The SEL data collected on a
given project can be grouped into the six high-level data types described in Table 2-1.

Tables 2-2 through 2-7 elaborate on the high-level data types introduced in Table 2-1 by
breaking them down, via a hierarchy of subtypes, to the level of elemental data items or
groups. Note that all SEL data, regardless of their source or collection mechanism, are
recorded on hardcopy forms for entry into a central database. The acronyms for these
forms appear in Tables 2-2 through 2-7 to provide a mapping from this section’s
conceptual descriptions of the data to the data collection mechanisms described in the
following section. In these tables, when the acronym for a given form is listed next to a
given data type, it means that the form is used to collect that data type (and any lower
level data subtypes). Thus, for example, all the Size data elements in Table 2-3 are
collected on a PCSF. In the same table, however, System Elements are collected on
three different forms (PSE, SIE COF). This is shown on the lower-level table
containing the data subtypes that collectively make up System Elements.

2-1

6201

Table 2-1. High-Level Classification of SEL Data Types

Type Description

Estimate data Data that capture the project leader's size, resource use,
and scheduie estimates at project start and periodically
throughout development.

Product data Data that characterize the final developed product in
terms of size measures and system composition.

Resources data Data that capture and characterize staff and computer
resources expended during development and
maintenance.

Process data Data that characterize the development process: its

schedule and profiles of development activities over time.

Change/error data Data that characterize changes made and errors
corrected during development and maintenance.

Annotation data Data that capture subjective information about a project,
the techniques and methodologies used on it, and the
data collected on it.

6210G(39)-14

2.2 HOW THE SEL COLLECTS DATA

This section provides an overview of SEL data collection concepts and serves as a
bridge from the conceptual view of the data the SEL collects (Section 2.1) to the details
of how the SEL collects them (Sections 3 and 4).

As has been noted, the use of hardcopy forms is a central concept in the SEL approach
to data collection. There are 15 types of SEL data collection forms, as listed in
Table 2-8. Each form is referenced by a 3- to 5-letter acronym. The next four columns
in this table describe the source of the data reported on each form, the mechanism by
which the data are obtained, the party responsible for completing the form, and the
frequency with which the form is submitted. The final column references the section of
the document where the form is discussed in detail. Samples of the forms can be found
in these reference sections, as well as in the Appendix.

As the table shows, the primary source of SEL data is the development and
maintenance personnel working on the projects the SEL monitors. Most of the forms
are filled out and submitted directly by developers, project leaders, and maintainers.
These forms require the individual completing them to supply basic identification
information, such as the team member’s name, the project name, and the date. The
remaining fields solicit both objective and subjective information, requiring either
short answers or selection of options from a checklist. Two forms (the PMF and the

2-2
6201

Table 2-2. Estimate Data

Type Form Description I

Size PEF Estimated size of the completed system.

Resource PEF Estimated staff resources (in hours) that will be
expended in developing the system: technicali,
management, and services.

Scheduie PEF Estimated start and end dates for each phase in the
development life cycle.

Subtype Description

Subsystem count Estimated number of logical
subsystems that will be present in
the design of the final system.

Component count Estimated number of separately
maintained components that wiil
be present in the final system.

SLOC Estimated volume of code (SLOC)
in the final system, total and
broken down by code ongin: new,
moditied, oid.

6210G{39)-13

PSF) are completed bv SEL personnel based on interviews with development
personnel (usually, the project leader).

A second source of SEL data is electronic, computer-based records that SEL personnel
monitor on a regular basis. These records include computer resources accounting
records (e.g., central processing unit (CPU) time used by user account identifier),
project-specific libraries of configured source code, and organizational employee time
accounting records. SEL personnel extract data from these sources and record them on
SPFs. Although this type of data is not collected directly from the development or
maintenance team, the project leader must communicate to SEL personnel exactly
what electronic records (user accounts, library names, etc.) are to be monitored.

The third source of SEL data is the development products generated on a project. At
the transition from development to maintenance and operations, SEL personnel
analyze the source code and documentation being delivered. They also validate and
sum the data collected over the development life cycle to compute final resource use
statistics. SEL personnel record the data produced by these analyses on a PCSF and
verify them in discussions with the project leader.

2-3
6201

Table 2-3. Product Data

Type Form Description

Size PCSF Size measures of the developed product
at delivery to operations and
maintenance.

System | - Data that identify and characterize

elements various componaents of the delivered
product.

Subtype Form | Description

Projects PSF Data that identity and categorize projects.

Subsysieme SIF Data that identity y them wih projects, and
categorize their function,

Components COF Data that dentity components, them wah subsy .
rank their deveiopmaent difficuity, and categonze them by origin,
type, and pwpose.

Subtype Descrigtion
Subsystem count Actual count of logical subsystems present in the
design of the deliversd system.
Component count Actual count ot separaisly maintained
ponents p o the deli d system.
Documentauon pages | Volume of panying doct
deveioped for the deliverad system.
SL0C Count of SLOC in deiivered system. Inciudes total

SLOC, 1otal comment lines, ang SLOC breakdown
by code origin: new, extensively moddied, slightly
moditied, and oid.

Executable moduies

Count of high-order language components n
delivered system that comain exscutable code.
Includes 1otal and breakdown by code ongin: new,
axtensively modified, slightly modifisd, and oid.

Statements Count of high-order language statements in the
deir y 1o be p by a anguage
transiator. includes total and breakdown by code
origin: new. extensively modified, siightly moditied,
and old.

Executable Count of executable high-order language

statements

stalemants in the deliversd sysiem to be
processed by a language transiator. Includes total
and breakdown by code orgin: new, extensively
moditied, slightly modified, and old.

The frequencies with which the various SEL forms are collected fall into four broad

categories:

[]
monitoring

(weekly, biweekly, monthly, etc.)

6201

24

6210G{39)r16

Startup data: Data collected when a project initially comes under SEL

Rate data: Data collected regularly with a predefined periodic frequency

—

Table 2-4.

Resources Data

6201

Type Form | Daescription
Staft - Personnel effort (in hours) expended in
rasources developing and maintaining the system.
Computer - Computer resources expended in
resources developing the system.
Subtype Form Description
Development | — Personnel effort (in hours) expended in
offort developing the system.
Maintenance WMEF | Personnel effort (in hours) expended in
effort maintaining the system - measured weekly, by
mainainer, and broken down by class ot
maintenanoce periormed and by type of
maintenance activities performed.
Subtype Form Desoription
Weekly SPF CPU hours logged and nurrider of runs mace
computer on development comrputers dunng
resources developmaent of the system, measured weekly.
Total PCSF Total CPU hours logged and number of
computer computer runs made on developmant
resourcea computers during development of the system.

Subtype | Form

Descripton

Activity hours | PRF CLPRF

Persornet effort (in hours) sxpended by developers
and frst ine managers m developing the system -

weshly, by oper, and broken down by
type of WUty por and by
special actvives in which the SEL has curent
resserch interests.

Serwces hours) SPF

Personnel effort (in howrs) expended by support
[n oping the system -

meassred weekly, by type of support senice

{ , publ project 9

other).

Total effort PCSF

Total personnet effort expanded in developing the
system, broken down by combined total techrical
and MaNegement hours and 11l Services hours.

2-5

6210G(39)-19

Table 2-5. Process Data

Type

Form

Description

Schedule PCSF

Actual start and end dates for each phase in
the development life cycle.

Status DSF Profiles of progress achieved toward
development goals and of open item closure
activity.

Growth SPF System growth measured by profiles over
time of source code library statistics: number
of components and total SLOC.

Subtyps Descnption

Requirements Proties over time of opan dtems that reilect
requiremeNts stabilty: requrements questions
asked vs. Yenis questi

ication modi wed ve.
spectication moditications mplermented.

Cesign Profile over time ot design progress: units planned
Vs, untts designed.

Irmplementation Profile over time of implementation progress: unis
planned vs. units implemented.

Testing Protiles over time of syatem and acceptance
testing progress: nurmber of tests planned vs.
number of tests run one time vs. numiber of tests
passed.

Discrepancies Protile over time of closure of reported
discrepancies: number of discrepances reportad
¥3. NUMber of discrepancies resoived.

[

These categorizations of data collection frequency are the basis for the organization of

Event data: Data collected when specific milestones or development events
occur (e.g., start of project, phase transitions, configuration of a component,

implementation of a change)

Data at completion: Data collected at the transition to maintenance and op-
erations and that summarize the development portion of the life cycle

Sections 3 and 4.

The SEL views the software life cycle according to a traditional “waterfall” model of
non-overlapping sequential phases. Although phases often overlap in practice, a
sequential model is used to simplify classification and analysis of the data. The phases
that make up this model, discussed in more detail in the Manager’s Handbook for

6201

2-6

Table 2-6. Change/Error Data
Type Form Description
Development --ee- Data that characterize changes made to
changas/errors configured source code during deveiopment.

Maintenance MCRF

changes/errors

Data that characterize changes made to the
system during operations and maintenance:
includes classffications of the type of
maintenance being performed, the cause of
the change, the effort spent on the change,
the objects changed, and the volume and
characteristics of the changed code.

Subtype Form Descrigtion
Change information CRF Effects of the change (components
changed), timeirame in which change
was impiemented, sftort spent on
change, categorizanon of change type,
Ada-spectiic change information.
Error information CRF Categorization of arror by source and
class, characteristics of efror,
Ada-spectic error information.
Change profile SPF Profite of development changes over
time, Measured by monrtoring version
numbers in the contigured source
library,
6210G(39)-17
Table 2-7. Annotation Data
Type Form Description
Data coilection PSF Iinformation used by SEL data collection personnel to monitor
information data collection activities for a given project; collected at
project startup and periodically thereafter as conditions change.
Messages PMF Free form messages for annotating information about a
project, the methodologies or life cycle it follows, its
relationship to other projects, or the data collected on it.
Subjective SEF Subjective rankings that characterize the probiem solved,
information the process followed, the development environment, the
resources available, and the quality of the product.

6201

2-7

6210G(39)-13

6201

Table 2-8. SEL Data Collection Forms
Reference
Acronvm Form name Sourcs Mechanism Resoonsibility Scheduie Section
CCF Component Change | Developmaent Form compistion | Project leader Event 3.2.2.3
Form personnel
CLPRF Cleanroom Personnel | Development Form compietion | Developars Rate 3.2.1.1
Resourcas Form personnei
CCF Component Development Form completion { Developers Event 3222
Origination Form parsonnei
CRF Change Report Form | Development Form completion | Deveiopers Event 3.2.2.4
personnel
DSF Deveiopment Status | Development Form completion | Project leader Rate 3.2.1.2
Form parsonnal
MCRF Maintenance Change | Maintenance Form completion | Maintainers Event 4221
Report Form personnei
PCSF Project Completion Systam Analysis SEL personnei | At 3.3.1
Statistics Form products/ completion
deveiopment
data
PEF Project Estimates Deveiopment Form completion | Project leader Startup/ 3.1.2
Form personnel rate/event
PMF Project Messages Development Interview SEL personnel | Event 3.2.2.5
Form persannel
PRF Personnal Resources | Deveiocpment Form compietion | Davelopers Rate 3.2.1.1
Form personnei
PSF Project Startup Form | Development Interview SEL personnel | Startups 3.1
personnel evant
SEF Subjective Development Form compietion | Project leader At 3.3.2
Evaluation Form personnel compietion
SIF Subsystem Deveiopment Form compistion | Project leader Event 3.2.2.1
Information Form personns;
SPF Servicas/Products Computer Monitoring SEL personnei | Rate 3.2.1.3
Form records
WMEF Weekly Maintenance | Maintanance Form compietion | Maintainers Rate 4.2.1.1
Eftort Form parsonnet
6201G(39)-20

Software Development (Reference 2), are shown along the bottom of Figure 2-1. The
bars and wedges on the figure illustrate the portions of the life cycle over which each
SEL form is collected.

Thus. the primary data collection activities the SEL performs over the software
development and maintenance life cycle are collecting and validating data collection
forms, monitoring and recording data from electronic records, and analyzing
development products at the transition from development to maintenance and
operations. These activities depend on regular communication between data collectors
and developers to ensure that the developers understand what they are expected to
provide and that the correct computer records are being monitored.

2.3 MANAGING THE DATA COLLECTION PROCESS

To be used effectively in analyzing and evaluating methodologies and technologies as
well as in the day-to-day monitoring and controlling of active projects, the data
collected must be available in an easily accessible electronic format and must be
monitored for accuracy and completeness. Staff resources must be allocated to perform
these database maintenance and data monitoring functions. The SEL has a dedicated
team of database programmers, data collection experts, and data librarians whose sole
task is to collect data, monitor the data collection process, and make the data available
to researchers and managers.

SEL data are stored under a relational database management system (RDBMS) hosted
on a Digital Equipment Corporation (DEC) VAX-series computer located in the
Systems Technology Laboratory (STL) at GSFC. The data collection team is
responsible for collecting SEL forms from development and maintenance projects,
entering the data from the forms into the database, ensuring the quality of the data
entered, and performing the automatic monitoring of computer records and
development products mentioned earlier. It is also responsible for designing,
implementing, and maintaining the database and its supporting application software
(References 3 through 5).

One of the most critical functions of the data collection team is to monitor the data
collection process to ensure that the data in the database are as accurate and complete
as possible. This goes beyond verifying that what a developer enters onto a form is
actually entered into the database correctly. It also involves ensuring that the developer
has completed the form correctly, both from a mechanical standpoint and from the
standpoint of correctly understanding and interpreting the questions on the form. This
is a more complex task. Clearly, the data collection team cannot check every form
submitted to make sure that the developer interpreted the questions correctly. Nor can
it follow the day-to-day details of the more than 20 projects being monitored at any
given time to judge the correctness of the data supplied.

Thus. it is crucial to establish regular two-way communication between developers and
the data collection team. Figure 2-2 illustrates the communication paths used by the

2-9
6201

£-(6€)D1029

aseyd Aq pe1oe||o) swiod 13§ °L-Z eanbyy

1ujod uopoetjoo prepuelS »

‘PBIBJIPU| SE ‘101/ES PBIDBII00 818 SWIO| BLLIOS ‘POpnpUY
S1 UoIHIUYep SluaWwanbas uByM "sisAjeue stuswanba) 1e suiBaq uoNdeY0d elep 13s ‘AleadA] T3

poy:ed uondelioo prepuels 7]

18)easeul paiwans 8q Aew selepdn (HQd) meiasy uBiseq Areuiwiield 1e pasnbey |

e | vty | wmts | vormmmson| 20| S | v | s
IS . s
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\N\\\\\\\\\\\\sMm
\\\\\»\\
A b
/] JHOW
SIS IS AI SIS IS
SIS IIIAIAIIILI I, 240
) -
o T o
SIS SIS,

EE

2-10

6201

Annotation

6201G(39)-5

Figure 2-2. Communication Paths in Monitoring SEL Data Collection

SEL in monitoring data collection. The team must first make the developers aware of
the SELs expectations by distributing copies of this document to developers and by
meeting with development teams at the start of a new project and at phase transitions
when new forms are introduced. The developers then supply the data collection team
with data—SEL forms as well as support information the team needs to monitor
computer records and development products. The data collectors periodically send out
reminders to the developers when data types that are not submitted on a routine basis
are due or when data that were expected are not received.

In addition, once data are entered into the database, the data collection team generates
periodic reports, both tabular and graphical, that summarize the data being collected.
These reports are distributed to the leaders of development and maintenance projects
for their analysis and to see whether the data being collected support their own intuitive
understanding of what is happening on their projects.

The data collection team also performs its own analysis of database reports and
questions the developers about unusual data points or trends identified in the data.
Both of these analyses result in feedback to the data collection team, which allows it to
correct problems in the database or annotate the data to indicate unusual circumstances.

Finally, the data collection process must be flexible enough to respond to changing
needs. Often, a new technology or a new methodology will be introduced that requires
changes in the data collected. This has happened many times in the SELs history. To
study the impact of Ada, for example, additional change characteristics specific to the
use of Ada were added. More recently, the SEL has been investigating the effectiveness
of the cleanroom methodology (Reference 6), which required different classifications
of effort data. Itis the job of the data collection team to respond to such changes in data
collection needs by evaluating the effect of a proposed change on the design of the
database structure and supporting application software, data collection procedures,
and database documentation. It also involves ensuring that proposed changes do not

2-11
6201

make data collected on earlier projects obsolete and invalidate comparisons among
those projects and more recent projects. Once a change is planned, the team must
communicate the nature of the change to both developers and database users and
coordinate its implementation in a manner that minimizes its impact and

inconvenience.

2-12

6201

SECTION 3—DATA COLLECTION IN THE DEVELOPMENT
LIFE CYCLE

This section presents detailed data collection procedures for the development phases
of the software life cycle, i.e., from requirements definition through delivery of the sys-
tem for maintenance and operations, following the life-cycle model referenced in Sec-
tion 2. It is subdivided to follow the life cycle chronologically. It first discusses data
collection activities at project startup, followed by data collection performed through
all development phases, and concluding with the data collection activities at project
completion. In each section, it provides detailed instructions for completing the corre-
sponding SEL data collection forms. These instructions begin with a discussion of gen-
eral background information needed to understand how the form is to be completed.
This is followed by line-by-line instructions for completing the form. A set of helpful
hints and caveats concludes the form instructions.

3.1 PROJECT STARTUP

When a project to be monitored by the SEL is initiated in the FDD, the first thing the
SEL must do is establish the lines of communication with the development team and
obtain some basic information about the project. To do this, a SEL data collection team
member (usually the Database Administrator (DBA), who is the primary point of con-
tact for SEL data collection issues) schedules a meeting with the project leader. This
meeting is usually held at the beginning of the requirements analysis phase. If require-
ments are defined by the development team, however, it may be held at the beginning of
requirements definition.

The purposes of this meeting are (1) to ensure that the project leader and developers
understand their role in the data collection process, (2) to establish acronyms and
naming conventions to be used in completing SEL forms, and (3) to give data collection
personnel an understanding of the application and any unique characteristics of the de-
velopment methodology being employed.

The first purpose is accomplished by distributing this document to the developers and
reviewing with the project leader both when and where SEL forms are submitted and
the instructions for the forms that are collected during the early life-cycle phases. The
general project information and naming conventions collected at this meeting are re-
corded on a PSF. Descriptions of the application and unique characteristics of the
methodologies being employed are also recorded on the PSE.

Topics that should be covered when discussing unique aspects of the project include any
approach or methodology that is new to the environment. Recent examples include
object-oriented design and cleanroom development. The discussion should also cover
any nonstandard approaches to development, such as a prototype or spiral life cycle, or
whether the project will be implemented in builds or releases. For SEL purposes, a

3-1

6201

“build” refers to a multistage implementation phase. Each build may culminate in a
distinct system test phase. A “release” refersto a life cycle where each successive itera-
tion of the system requires separate design, implementation, system test, and, often,
acceptance test phases. Inotherwords, each release has a distinct life cycle and usually
results in a delivered product. As a general rule, a project that is implemented in multi-
ple builds should be treated as a single project in the SEL database. Projects that are
developed in releases generally require each release to be treated as a separate project
in the database.

In cases where the life cycle to be followed by the project does not conform to the SEL
sequential phase model, the project leader and SEL data collection personnel should
agree on how the actual life cycle will map to SEL phase definitions. This information
as well should be documented at the startup meeting.

The final information to be obtained at project startup is an initial set of project esti-
mates. These estimates are recorded on a PEF and include the following types of in-
formation: gross estimates of resources, software product sizes, dates on which the
development life-cycle phases of the project are scheduled to start, and a projected
project end date. The estimates provided reflect the project size and resource expendi-
ture when the software is delivered for maintenance and operations.

3.1.1 Project Startup Form (PSF) .
General Information

The PSF (Figure 3-1) is a template used by SEL data collection personnel for recording
information collected at the project startup meeting. Itis not filled out directly by de-
velopers. The information recorded on it allows the data collectors to initialize the
project in the database so that the data librarians may begin collecting and entering the
standard forms collected during development. In addition to being used at the startup
of a development project, this form can be used to document similar information at a
project’s transition to maintenance and operations, a use of the form discussed further
in Section 4. The instructions that follow focus on its use at the beginning of develop-
ment.

The information recorded on the PSF may change during the project. It is not neces-
sary to complete another PSF to document these changes. The data collection team
distributes a monthly data collection status report for each active project being moni-
tored. The report lists project personnel, computer accounts, configured source library
names, computer systems, forms being collected, and task numbers. It is updated each
month by the project leader so that the data collectors can keep this “data about the
data collection” current on each project. A discussion of this report can be found in
Section 3.2.1.3, along with a sample report page.

The initial general messages should be supplemented during development and at the
transition to maintenance. This happens when a development team member (usually

3-2
6201

PROJECT STARTUP FORM

Name:
Project: Date:

PLEASE PROVIDE ALL AVAILABLE INFORMATION

Project Full Name:

Project Type:

Contacts:

Language:

Camputer System:

Account:

Task Number:

Forms To Be Collected: (Circle forms that apply)
PEF PRF CLPRF DSF SPF SIF COF CCF CRF SEF PCSF WMEF MCRF

General Notes:

Personnei Names (indicate with * it notin database):

NOVEMBER 1991

Figure 3-1. Project Startup Form

3-3

6201

6201G(13) 36

the project leader) communicates information to SEL personnel that explains any
unique characteristics of the project, unusual data points or trends, or anything unusual
about the data collection process. The SEL data collector records this information on a
PMF (see Section 3.2.2.5) and enters it into the database.

Line-by-Line Instructions

Name: Enter the name of the data collection team member (usually the SEL DBA)
conducting the startup meeting and completing the form.

Project: Enter the acronym (up to 8 characters) by which the project will be referred,
as agreed to with the project leader at the startup meeting. This acronym will be used by
all developers on all subsequent SEL forms to be submitted for the project.

Date: Enter the date on which the project startup meeting is held.

Project full name: Enter the complete project name, with spacecraft and application
acronyms fully spelled out.

Project type: While discussing the nature of the application with the project leader,
determine which of the following project categories best describes the application, and
enter the project type code onto the form:

Type Code Description
AGSS Spacecraft Attitude Ground Support System
SIMULATOR | Spacecraft Dynamics or Telemetry Simulator
MP&A Mission Planning and Analysis System

GRAPH/UI |Graphical display or user interface system

ATTITUDE | Attitude application (not an AGSS or simulator) — may be mission-
specific or general use

ORBIT Orbit application — may be mission-specific or general use

REALTIME |Real-time data processing or control application

DATABASE | Database support application — data entry, report generation, etc.

TOOL Software development or management tool

OTHER Application that does not fall into any of the above categories

Contacts: Enter the names of contractor and GSFC personnel responsible for manag-
ing the project. This includes the GSFC assistant technical representative (ATR), the
contractor task leader, and the contractor section manager, one of whom is usually des-
ignated the key point of contact (project leader) for data collection purposes.

3-4
8201

Language: Enter the primary language in which the application is being developed,
along with any other languages used on the project.

Computer system: Enter the computer system on which the project is being devel-
oped, as well as that for which the system is targeted, if different. Enter all types of ma-
chines to be used if the system is distributed across multiple hardware platforms.

Account: Enter the names of the computer accounts to be monitored automatically by
SEL personnel for CPU hours used and number of runs made. In the Flight Dynamics
Facility (FDF) mainframe environment, this is the sponsor code. In the STL VAX envi-
ronment, this is the group identifier common to all user identifiers for personnel work-
ing on the project. These accounts may not be known at project startup. If this is the
case, the project leader should be reminded to communicate that information to the
SEL as soon as it is available.

Task number: If the project is being developed by a contractor development team,
enter the task number under which the contractor work is being performed. Thisisused
by the SEL in automatically monitoring certain types of effort data extracted from per-
sonnel timekeeping records.

Forms to be collected: Circle the forms to be collected on the project. The standard
set of forms collected on a typical project includes the PEF, either the PRF or the
CLPRF (depending on the development methodology being followed), the COF, the
CCE, the CREF, the SEF, and the PCSE. Usually, the DSF and the SPF are also collected,
but there are cases where one or both may not be collected.

General notes: Enter free-format text that describes the application and any unique
features about the development life cycle or methodology or about the data collection
being performed on the project.

Personnel names: Enter the names of personnel who will be submitting forms on the
project. If an individual has submitted forms on other projects in the past, use his/her
name as it already appears in the database. For someone new to SEL data collection,
record his/her full name and establish a database name, which is normally first initial
followed by last name. In cases where this name conflicts with an existing name in the
database, a variation may be used, such as adding the middle initial. New names should
be identified by an asterisk, indicating that data collection personnel must enter them
into the database. Be sure to leave a list of new names with the project leader and
instruct him/her to have developers use the agreed-upon names when completing
forms.

Helpful Hints

1. Determining a project type is sometimes a source of confusion. One varia-
tion arises when a subsystem of an Attitude Ground Support System (AGSS)
is developed by a separate development team and tracked as a separate
project by the SEL. This type of project should get a project type of AGSS,

3-5

6201

and there should be a note in the general messages connecting it to the other
projects being monitored that make up the AGSS.

One technique for deciding the project type is to go through the list of typesin
the order presented above and select the first category that applies.

b

There should be a single contact designated as project leader. This person
will be responsible for all communication with the data collection team re-
garding data collection matters. He/she will also be the person who com-
pletes PEFs and DSFs, and to whom the SEL sends reminders when
information is due.

3. The SEL does not monitor computer-use accounting information for work
done on personal computers (PCs). If a major portion of actual development
work (coding and testing) is being done on PCs, the SEL will not monitor any
computer-use information for the project. This does not, however, include
using PCs merely to generate documentation or design diagrams.

4. When determining what forms will be collected, the SPF (which is completed
by data collection personnel with automatically monitored data) will not be
submitted if none of the three types of data recorded on it can be monitored.
For example, SPFs would not be submitted for an all-GSFC project (having
no contractor timekeeping records to monitor) in which development was
being performed on PCs (prohibiting the collection of both computer-use
and growth data).

3.1.2 Project Estimates Form (PEF)

General Information

The PEF (Figure 3-2) is submitted by the project leader at startup and every 6 to
8 weeks thereafter throughout the development phases of the project life cycle. It is
also submitted when new estimates are made at project milestones. This information
provides a historical record of project size, schedule, and resource-use estimates that
may be used in analyzing the project when completed. These estimates should be pro-
jections for the delivered system and should notinclude anticipated changes and expen-
ditures in the maintenance and operations phase.

A project leader may submit a PEF at any time to inform the SEL of updated estimates.
The SEL, however, sends out reminders that new estimates are due when 6 weeks have
transpired since the last form was received. These reminders are in the form of a PEF
completed by SEL personnel with the estimate values submitted on the most recently
received form. Upon receiving this reminder, the project leader is to enter the form
date and mark up the existing estimates on the form to indicate updates. If the project
leader has not made a new estimate since the last PEF received, he/she may simply
enter the form date and mark on the form that no updates need be made.

3-6
6201

PROJECT ESTIMATES FORM
Name:
Project: Date:
Phase Dates (Saturdays) Staff Resource Estimates
Phase Start Date Programmer Hours
Requirements Definition Management Hours
Design Services Hours
Implementation
System Test
Acceptance Test
Cleanup
Project End
Project Size Estimates
Number of subsystems
Number of components
Source Lines of Code
Total
New
Modified
Od
Note: All of the values on this form are to be - For Ubrarian's Usa Oniy
estimates of projected values at completion Number:
of the project. This form shouid be o
submitted with updated estimates every 6 to Date:
8 weeks during the course of the project. Entered by:
Checked by:

NOVEMBER 1991

Figure 3-2. Project

3-7
6201

Estimates Form

6201G(13)-16

As the project proceeds through its life-cycle phases, the phase dates supplied for com-
pleted phases should represent the actual dates on which the phase transition occurred.
The remaining estimate information is always a projection of resources used and proj-
ect size at the end of the project. Resource estimates in terms of staff-hours are pro-
vided for technical, management, and services personnel. Project size estimates
include the number of subsystems, components, and SLOC. The latter includes the to-
tal SLOC and a breakdown by new, modified, and old SLOC.

Line-by-Line Instructions

Name: Enter the SEL database name of the project leader completing the form. Usu-
ally, the database name consists of a first initial followed by a last name. Questions
about database names should be referred to the SEL DBA.

Project: Enter the acronym selected at project startup that uniquely identifies the
project being monitored.

Date: Enter the date on which the form is completed.

Phase Dates

Enter the estimated start dates (or actual start dates for phase transitions that have al-
ready passed) for each of the listed phases that apply to the project. These phases map
to the SEL life cycle introduced in Section 2 with two exceptions:

1. The design phase on the PEF encompasses the requirements analysis, pre-
liminary design, and detailed design phases of the SEL model.

2. ThePEFincludes a cleanup phase thatstartswhen the system is accepted and
ends with the delivery of system products to a maintenance and operations
team.

To supply accurate phase dates on the PEF, it is necessary to understand the definition
of the phases in the SEL life-cycle model. The SEL uses the “waterfall” model to define
this series of phases. The SEL realizes that, in practice, there is normally a period of
overlap during the transition from one phase to the next. However, it is recommended
that discrete events be used to signal the end of one phase and the beginning of the next
phase. SEL phase definitions and guidelines for beginning new phases are summarized
in Table 3-1. A more complete definition of project phases can be found in the Recom-
mended Approach to Software Development (Reference 7).

If the project is following a nonstandard life cycle, the phases of that life cycle should
have been mapped to the SEL phases in an agreement discussed at the project startup
meeting. If, for example, each build in the implementation of a given development ef-
fort includes its own system test phase, it might be agreed that, for the SEL PEF, the
system test phase begins when integration testing is complete for the first (or second, or
last) build. The key is to have identified ahead of time a discrete event to be used to
signal the phase transition.

6201

Table 3-1.

SEL Phase Definitions

SEL Phase

Activities

Start Date

Requirements

Define requirements

Start of project. Note: only applicable

Definition Write requirements and functional it developers are responsible for
specifications generating system requirements
Design Requirements analysis Delivery of requirements and
Preliminary design functional specifications or start of
Detailed design software development task
Design reviews and responses
to questions
Implementation Code, read, and unit test modules Critical Design Review (CDR)

Integration and integration
testing

Successful completion of integration
testing

System Test End-to-end testing of integrated

system

Successful execution of all system
tests

Execution and evaluation of
acceptance tests

Acceptance Test

Cleanup Acceptance of the system

Generation of system tape
Completion of system documen-

tation

6201G(13)-34

Phases must begin on a Saturday. Saturday dates are used to avoid any ambiguity as to
which phase a given piece of data belongs, since much of the weekly rate data the SEL
collects are tagged with a Friday date to represent the previous week’s activity. If the
event that signals the transition from one phase to the next occurs on a weekday (asit is
most likely to do), the date of the nearest Saturday should be used. If a given phase is
not included in the life cycle of a particular project, a start date for that phase need not
be provided. For example, if the start date for acceptance test is omitted, it will be as-
sumed that system test runs from the system test start date to the cleanup start date. By
the same token, phases should not begin and end on the same date. At least one phase
date and a project end date must be provided. If they are not, the PEF will be rejected at
data entry.

Programmer hours: Enter the total technical hours projected to be expended by the
delivery of the operational software product. (See hint 2.)

Management hours: Enter the total management hours projected to be expended by
the delivery of the operational software product. (See hint 2.)

Services hours: Enter the total support services hours projected to be expended by
the delivery of the operational software product. (Support services personnel include
secretaries, librarians, technical publications personnel, couriers, etc.)

3-9
6201

Number of subsystems: Enter the projected number of subsystems that will be in-
cluded in the design of the finished product. Subsystems are defined as a logical parti-
tioning of the system design. This should not be confused with the mutually exclusive
partitioning of system components used to define subsystem prefixes (see Sec-
tion 3.2.2.1). For example, FORTRAN COMMON block components may be refer-
enced in more than one logical subsystem and may be grouped under a separate
subsystem prefix. They would not be counted as a separate subsystem of the system de-
sign, however. For object-oriented designs, logical subsystems are sometimes nested
within other subsystems. Each of these logical subsystems should be counted when pro-
viding the subsystem estimate. Also see hint 4 for a discussion of reuse and size estima-
tion.

Number of components: Enter the projected number of components that will be de-
livered as part of the finished software product. A component is defined as the lowest
level configuration item of the system or the smallest piece of the system maintained in
itsown file. Components include source code (FORTRAN subroutines, functions; Ada
procedures, package specifications; display panels written in a graphics language; as-
sembly language routines, etc.) as well as data files that are configured elements of the
delivered system (definitions of screen displays, translation tables, etc.). Components
do not include data files used to test the system or command procedures used to build
the system, as these will vary in operational use and are usually not delivered as config-
ured pieces of the system. Also see hint 4 for a discussion of reuse and size estimation.

Source lines of code—total: Enter the projected total SLOC for the delivered soft-
ware product. A source line of code is defined as a carriage return or card image within
a component. This includes blank lines, comments, code, and data. The total SLOC
must equal the sum of the new, modified, and old code estimates on the following lines.
Also see hint 4 for a discussion of reuse and size estimation.

Source lines of code—new: Enter the projected total new SLOC that are to be de-
veloped for the system. Also see hint 4 for a discussion of reuse and size estimation.

Source lines of code—modified: Enter the projected total SLOC that are to be re-
used from other sources with modifications to meet the requirements of the system.
Also see hint 4 for a discussion of reuse and size estimation.

Source lines of code—old: Enter the projected total SLOC that are to be reused
from other sources with no modification. Also see hint 4 for a discussion of reuse and
size estimation.

Helpful Hints

1. One of the most common errors in completing the PEF is to provide a re-
quirements definition date when the requirements definition phase is not
monitored by the SEL. This results from confusing requirements definition
with requirements analysis. Remember that, for purposes of SEL phase
dates, requirements analysis is part of the design phase.

3-10
6201

6201

One area of potential confusion is the distinction between technical and
management hours. Generally, estimation algorithms predict management
effort as some percentage of total effort or some percentage of the technical
effort that is added in to compute total effort. For early estimates, this is the
number that should be used. The confusion ariseswhen a project leader later
tries to update the estimate based on actual and projected expenditures re-
corded as “Project Management” hours, which are automatically collected
by SEL personnel from accounting records (see discussion under the SPF
instructions, Section 3.2.1.3). Those hours do not include management
hours charged by line managers, who record both technical and management
hours on PRFs (Section 3.2.1.1). The proper way to update the estimate is
to ignore how management charges are reported to the SEL (whether via
SPF or PRF) and use actual and projected expenditures for all charges made
to management accounts in the timecard accounting system being used to
track these charges.

It is expected that early estimates will be coarse but will improve as more is
learned about the system and updated estimates are submitted. Thus, some
of the information requested on the PEF may not be known for the earliest
estimates. The project leader is encouraged to think about all of the items
on the form and try to come up with an estimate of each. If thisis not possible,
however, the minimum set of estimates required on the form includes a set
of phase dates (including a project end date on which the system will be deliv-
ered), and estimates of technical hours, management hours, number of com-
ponents, and total SLOC. More complete estimates will then be expected on
subsequent forms.

Questions often arise as to how reuse should be treated in supplying size esti-
mates. Obviously, reused source code that is copied into the project config-
ured library, maintained there, and delivered as part of the system should be
included in both the component count and the SLOC counts. Itis alittle less
clear how to treat reused software that is maintained separately and linked
in to the system. The guideline here is thatif it is linked in from an institution-
ally maintained tool (such as a graphics display tool or vendor-supplied,
language-specific library of mathematics routines), it should not be counted.
If, however, the reused software is linked in from a separately maintained ap-
plication or a generic set of application-specific software designed to be re-
used, this software should be included in the size estimates, whether it
involves linking in single components or entire subsystems. Such reuse
counts should be reflected in the subsystem, component, total SLOC, and old
SLOC estimates. Examples of linked-in reuse that should be counted in the
FDD environment are the Multimission Three-Axis Stabilized Spacecraft
(MTASS) and Multimission Spin-Axis Stabilized Spacecraft (MSASS)

3-11

generic attitude ground support applications (References 8 and 9, respec-
tively) and the Code 550 Reusable Software Library (RSL) (Reference 10).

3.2 DATA COLLECTION DURING DEVELOPMENT

Once startup information and an initial set of estimates have been collected, SEL data
collection continues through the development life-cycle phases. As discussed in Sec-
tion 3.1.2, the SEL continues to collect estimate data on PEFs at major project mile-
stones and at 6- to 8-week intervals, sending reminders to project leaders when updates
are due. In addition, the SEL begins to collect rate data. Ascan be seen by examining
Table 2-8 and Figure 2-1, the rate data forms include the PRF (CLPRF), the DSF, and
the SPE. Rate data and the forms used to collect them are discussed in Section 3.2.1.
Figure 2-1 also shows the event data forms collected through development. These in-
clude the CCE, the COF, the CREF, the PMF, and the SIF. Event data and the corre-
sponding forms are discussed in Section 3.2.2.

3.2.1 Rate Data

Rate data collected by the SEL originate from two sources. One source is the forms
completed by the developers on the project. These forms include the PRF and its clean-
room variation (CLPRF), and the DSF. The other source of rate data is automatic mon-
itoring performed by the SEL data collection team. The data types monitored
automatically include growth, computer resources, and a subclass of effort data that is
not recorded by developers on the PRF. SEL personnel record these automatically
monitored rate data on an SPE. These four forms are discussed in the following sec-
tions.

3.2.1.1 PERSONNEL RESOURCES FORM (PRF) AND
CLEANROOM PERSONNEL RESOURCES FORM (CLPRF)

General Information

Effort data are collected on either a PRF (Figure 3-3) or a CLPRF (Figure 3-4). Which
resource form is used is determined by the methodology used to develop the software.
Developers on projects following the cleanroom methodology complete the CLPRF:;
those on all other projects complete the regular PRF.

The PRF details the standard development activities performed during a given week
and identifies how many hours were expended on each of them. The PRF also contains
an area for recording hours spent on special activities. A special activity is any activity
of current specific interest to SEL researchers, such as rework, documentation, or
training in a new methodology. The CLPREF differs from the PRF in that the standard
development activities and special activities are geared to accommodate the study of
cleanroom techniques.

A PRF/CLPREF is submitted weekly by every member of the development team who
performs technical work on the project. This includes managers who perform both

3-12
6201

Personnel Resources Form

Name:

Project: Date (Friday):

SECTION A: Total Hours Spent on Project for the Week:

SECTION B: Hours By Activity (Total of hours in Section B shouid equal total hours in Section A)

of PDL, design diagrams, etc.

Activity Activity Definitions Hours
Predesign Understanding the concepts of the system. Any work prior to the actual design (such
as requirements analysis).
Create Design Development of the system, subsystem, or components design. [ncludes development

Read/Review Design | Hours spent reading or reviewing design. Includes design meetings, formal and informai
reviews, or walkthroughs.

Wirite Code Actually coding system components. Includes both desk and terminal code development.

Read/Review Code Code reading for any purpose other than isolation of errors.

Test Code Units Testing individual components of the system. Includes writing test drivers.

Debugging Hours spent finding @ known error in the system and developing a solution. Includes gen-
gration and execution of tests associated with finding the error.

Integraticn Test Writing and executing tests that integrate system components, including system tests.

Acceptance Test Running/supporting acceptance testing.

Other Other hours spent on the project not covered above. Inciudes management, meetings,

training hours, notebooks, system descriptions, user’s quides, etc.

SECTION C. Effort On Specific Activities (Need not add o A)
(Some hours may be counted in more than one area; view each activity separatety)

effort caused by rinplanned changes to specifications, erroneous or changed design, efors or
unplanned changes to code, changes to documents. (This includes ail hours spent debugging.)

code, or documentation. These are not caused by required changes or errors in the system.

prologs, in-ine commentary, test plans, system descriptions, user's quides, or any other system
documentation.

Rework: Estimate of total hours spent that were caused by unplanned changes or ermors. inciudes [:

Enhancing/Refining/Optimizing: Estimate of total hours spent improving the efficiency or clarity of design, or D

Documenting : Hours spent on any documentation of the system. Includes development of design documents, :]

Reuse: Hours spent in an effort to reuse components of the system. Includes effort in looking at other D
system(s) cesign, code, or documentation. Count total hours in searching, applying, ang testing.
For Libranan's Use Only
Number:
Oate:
Entered by:
Checied by:

NOVEMBER 1991

Figure 3-3. Personnel Resources Form

3-13

6201

5150G(21)-38

Name:

Personnel Resources Form
(CLEANROOM VERSION)

Project:

Date (Friday):

SECTION A: Total Hours Spent on Project for the Week:

SECTION B: Hours By Activity (Total of hours in Section B shouid equai total hours in Section A)

Activity

Activity Definitions

Hours

Predesign

Understanding the concepts of the system. Any work pnor 10 the actual design (such
as requirements analysis).

Pretest

Developing a test plan and building the test envionment. nciudes generating test cases
generating JCL, compiling components, buikding libraries. and defining inputs and
probabilities.

»

Create Design

Oevelopment of the system, subsystem, or components cesign. Includes box structure
decomposition, stepwise refinement, deveiopment af POL. design diagrams, etc.

Verity/Review Design

Includes design meetings. formai and informal reviews. ang walkthroughs.

Write Code

Actually coding system components. Inciudes both desk and terminal cods develooment.

Read/Review Code

Coda reading for any purposa other than isolation of errers. Includes venfying and
reviemng code for correctness.

Independent Test

Executing and evaluating tests of system companents.

Response 1o SFR Isolating a tester-reported problem and developing a soluwon. Includes writing and
reviewing design or code to isclate and correct a tester-reconed problem.

Acceptance Test Running/supporting acceptance tesung.

Other Qther hours spent on the project not covered above. (ncudes management, mestings,

raining hours, natebooks, system descriptions, user's guices, erc.

SeCTION C: Effort On Specific Activities

Methodology Understanding/Discussion: Estimate the total hours spent learning, ciscussing, reviewing or
attempting to understand cleanroom-related methods and techmiques. Includes ail tme spent in training.

]

| For Libranan's Use Onty

Numoer:

Entereq by

Checxsa dy:

NOVEMBER 1991

Figure 3-4.

6201

Personnel Resources Form (Cleanroom Version)

3-14

6201G(13)-24

technical and management work. A PRF/CLPRF is required from every team member
for each week he/she is assigned to the project, even for weeks in which no hours are
worked on the project (e.g., vacation or temporary assignment to another project). The
“zero-hour” form is the mechanism by which the SEL data collectors ensure that the
effort data collected for a given week are complete. Project leaders receive reminder
notices for all team members from whom the SEL does not receive a form in a given
week. The SEL maintains a list of developers currently assigned to each monitored
project and uses it to generate these reminders. The list is given to project leaders to
update each month as part of the data collection status report (see discussion and exam-
ple in Section 3.2.1.3).

The SEL expects that the project leader will help to assure the quality of data submitted
on PRFs and CLPRFs. He/she should spot check the PRFs submitted by team mem-
bers to ensure that the hours recorded match those the team member charged to the
project in the organization’s timekeeping system and that the activities under which the
team member recorded hours are appropriate for the types of activities being per-
formed on the project.

Line-by-Line Instructions

Name: Enter the SEL database name of the developer completing the form. Usually,
the database name consists of a first initial followed by a last name. Questions about
database names should be referred to the SEL DBA.

Project: Enter the acronym selected at project startup that uniquely identifies the proj-
ect being monitored. Check with the project leader if unsure of the correct name.

Date (Friday): Enter the Friday date corresponding to the end of the week for which
hours are being recorded. Data are to be reported on this form for all work performed
on the project during the preceding Saturday-through-Friday period.

Section A

Total hours spent on project for the week: Enter the total hours actually worked on
the project for the current week. This includes any overtime, whether paid orunpaid. It
does not include paid hours not charged to the project, such as sick time, holidays, or
vacations. Note that this number must equal the sum of the hours recorded for the de-
velopment activities in Section B. If partial hours are recorded, enter them in decimal
form to the nearest tenth of an hour. Do not enter fractions. This also applies to all of
the activity hours in Sections B and C.

Section B for PRFs

Predesign: Enter the number of hours during the current week spent understanding
the concepts of the system before any actual design work. This activity includes
requirements definition and requirements analysis. It also includes the analysis of any

3-15

6201

changes made to requirements or specifications, regardless of where in the life cycle
they occur.

Create design: Enter the number of hours during the current week spent performing
design activities, such as high-level partitioning of the problem, drawing design dia-
grams or structure charts, maintaining a data dictionary, specifying components, writ-
ing prologs and program design language (PDL), and compiling design notebooks or
documents.

Read/review design: Enter the number of hours during the current week spent re-
viewing design materials. This includes formal design reviews, informal reviews or
walkthroughs, and studying the current system design or that of other systems (such as
those from which software is being reused).

Write code: Enter the number of hours during the current week spent actually writing
code, whether modifying reused components, developing new components, imple-
menting a change, or correcting an error. It includes both desk and terminal time. It
also includes writing code when developing prototypes.

Read/review code: Enter the number of hours during the current week spent reading
code. This includes desk checking, reviewing the code of other team members, studying
old code for potential reusability, and preparing for and attending code inspections. It
does not include studying code to isolate an error.

Test code units: Enter the number of hours during the current week spent unit testing
individual system components. This includes time spent devising test cases, developing
test matrices, and coding test drivers and program stubs, as well as time spent actually
executing and evaluating tests. It does not include time spent isolating and correcting
errors encountered during the testing.

Debugging: Enter the number of hours during the current week spent isolating errors
in the system and developing a strategy for their solution. This includes time spent
studying code, generating and executing special test cases, inserting debug code, and
any other steps taken to isolate the error. Once the source of the error has been found,
however, the time spent implementing the correction and performing regression test-
ing should not be considered debugging time. Rather, it should be recorded under the
appropriate designing, coding, and testing activities.

Integration test: Enter the number of hours during the current week spent integrating
system components and testing integrated system components. This includes the gen-
eration of test plans; execution of build, integration, or release tests; and system testing.
It does not include, however, isolation and correction of errors that were uncovered as a
result of such testing.

Acceptance test: Enter the number of hours during the current week spent executing
acceptance tests or supporting the acceptance test team in the execution of such tests.
Do not include time spent isolating and correcting errors that occur during acceptance
testing.

3-16
6201

Other: Enter the number of hours during the current week that do not fall into any of
the above categories. This category covers such activities as meetings, management,
travel, training, configuration management, and documentation.

Section C for PRF's

Rework: Enter the number of hours during the current week spent reworking any por-
tion of the system for any unplanned reason. This includes changes to the require-
ments, unforeseen hardware or software limitations, and correction of errors. These
hours should include all hours recorded for the debugging activity in Section B. In addi-
tion, however, they should include the hoursspent actually correcting errors and testing
the corrections. Note that this category is not limited to the rewriting of code but
includes redesigning, regression testing, and even updating documentation.

Enhancing/refining/optimizing: Enter the number of hours during the current week
spent changing the system to improve the clarity or efficiency of the design or code or to
improve system performance. This does not include changes made as a resuit of un-
foreseen requirements changes and error corrections.

Documenting: Enter the number of hours during the current week spent generating
or updating system documentation. This includes development plans, design docu-
ments, in-line comments in code, prologs, test plans, system descriptions, user’s guides,
and project histories.

Reuse: Enter the number of hours during the current week spent attempting to reuse
software from other systems. This includes reuse of design and documentation as well
as of actual code. It includes the time spent searching for potential reusable compo-
nents, evaluating them, modifying them to meet system requirements, if necessary, and
testing them. It also includes evaluating the functionality of and interfaces with reused
software that is linked to the system, rather than copied in as source code.

Section B for CLPRF's .

Predesign: See PRF instructions. This activity is performed by both developers and
testers.

Pretest: Enter the number of hours during the current week spent writing a statistical
test model, developing a test plan, and building the test environment. This activity in-
cludes configuration management, creating job control language (JCL), compiling
components, building libraries, and defining inputs and probabilities. This activity is
performed by testers only.

Create design: Enter the number of hours during the current week spent performing
design activities, such as developing a state machine representation, specifying module
functionality, defining data, and writing PDL. This activity is performed by developers

only.

3-17

6201

Verify/review design: Enter the number of hours during the current week spent re-
viewing design materials. This includes formal design reviews, informal reviews or
walkthroughs, and studying the current system design or that of other systems (such as
those from which software is being reused). This also includes reviewing redesign work
resulting from resolving software failure reports (SFRs), or from implementing specifi-
cation modifications. This activity is performed by developers only.

Write code: See PRF instructions. This activity is performed by developers only.

Read/review code: See PRF instructions. This activity is performed by developers
only.

Independent test: Enter the number of hours during the current week spent execut-
ing and evaluating tests of system components as an independent tester. This activity is
performed by testers only.

Response to SFR: Enter the number of hours during the current week spent isolating
a problem reported by a tester on an SFR, and developing a solution. This activity is
performed by developers only.

Acceptance test: See PRF instructions. This activity is performed by both developers
and testers.

Other: See PRF instructions. Note, however, that configuration management is a Pre-
test activity in the cleanroom methodology and should not be included in the Other
category. This activity is performed by both developers and testers.

Section C for CLPRF's

Methodology understanding/discussion: Enter the number of hours during the
current week spent learning, discussing, reviewing, or attempting to understand the
cleanroom techniques and method. This also includes any training.

Helpful Hint

Perhaps the most common error made by developers in completing the PRF is to
assume that the activities under which theyrecord their hours must match the proj-
ect’s current life-cycle phase. They might assume, for example, that if the project
is in the preliminary design phase, all of their hours should be recorded under the
Create Design and Read/Review Design activities. In fact, they may be spending
time reviewing requirements (Predesign), developing prototypes (Write Code,
Debugging, etc.), or examining code for potential reuse (Read/Review Code). As
another example, a developer resolving a problem during the system test phase
may be tempted to charge all of his/her hours to Integration Test, when time spent
isolating the problem should really be charged to Debugging, time spent creating a
solution should really be charged to Write Code (and possibly to Create Design as
well), and time spent retesting the corrected unit should really be charged to Test

3-18
6201

Code Units. It is extremely important to remember that PRF activities do not map
directly to calendar phases and to report the time spent performing each activity as
accurately as possible.

3.2.1.2 DEVELOPMENT STATUS FORM (DSF)
General Information

The DSF (Figure 3-5) is used to record status data, requirements measures, and discre-
pancies. Status data are measured as progress toward a target goal. Requirements
measures and discrepancies are measured as a number of reported events that require a
response and the number of those events to which a response has been made.

As shown in Figure 2-1, DSF collection begins in requirements analysis and continues
through system delivery. Requirements measures are recorded through that entire
span. Status data are added in detailed design, and discrepancies are added in system
test.

It is the responsibility of the project leader to complete the DSF biweekly (every other
week). Since this deviates from the weekly norm for rate data, the SEL distributes to
each project leader a DSF preprinted with the most recently submitted data for his/her
project in weeks when a DSF is due. This way, the project leader need only mark up the
form to indicate values that have changed since the last form submitted (Figure 3-6).
There is a box on the form to check if no changes are necessary.

It is anticipated that project leaders are tracking the types of data collected on the DSF
and have their own mechanisms and tools for doing so. There may, however, be casesin
which not all of the data types are being tracked. A small project, for example, that de-
veloped its own requirements may not go through the formality of using requirements
question-and-answer forms. Thus, the DSF is intended to capture whatever project
leaders are measuring. They are not required to synthesize data that they would not
normally track in the course of managing the project.

Status data are generally monitored only until the target value is reached. Usually, this .
corresponds to a calendar phase of the life cycle. There may, however, be periods of
overlap during which more than one type of status data is measured. If the prolog and
PDL for the units in each build are generated at the beginning of the build, for example,
design status may be measured through the implementation phase at the same time that
code status is being measured.

When a status measure reaches its target, measurement should stop on that activity.
Rather than having data collectors make that decision and automatically stop
monitoring on a given activity, the SEL relies on the project leader to indicate when a
given activity is complete. This is done by marking the status data preprinted on the
form with a slash through the values fields, as shown on the sample preprinted form
(Figure 3-6). This will tell the data collectors not to enter the values in those fields and
will stop those values from appearing on future preprinted forms distributed for
updates.

3-19

6201

DEVELOPMENT STATUS FORM

Name:

Project. Date:

Please complete the section(s) that is appropriate for the current status of the project.

Design Status

Planned total number of components 10 be designeg
{(New, modified, and reused)

Number of components designed
(Prolog and PDL have been completeq)

Code Status

Planned tatal number of companents to ba coded
{New, moaified, and reused)

Number of camponents completed
{Addea to contrailed library)

Testing Status) i System Test ‘ Acceptance Test

Total number of separate tests planned | i

Number of tasts axacuted at least one time i |

Number of tests passed

Discrepancy Tracking Status (from beginning of system testing)

Total numoer of discrepanctes reported i

Totatl numoer of discrepancies resoived I

Specification Modification Status (from beginning of requirements analysis)

Total numper of speciication modifications receivea

Total numper of specification madificatians completea (impiementeq)

Requirements Questions Status (from beginning of requirements analysis)

Total number of questions submntted 10 anaiysis i

Totai number of questions answarad by analysts

Check here if there For Libranian's Use Only
are no changes
Number:
Date:
Entered by:
Checked by:

NOVEMBER 1991

Figure 3-5. Development Status Form

3-20
6201

6201G(39) 8

DEVELOPMENT STATUS FORM
Check here

For Librarian's Use Only

Please ccmplete the
section(s) that 1is

Name: PLZADER if there are
Project: PROJECTX | no changes

. G- -
Date: 1¢-JUL-91 E :

Number:

Date:

Entered by:

Checked by:

appreopriate for the current
status cf the project.

**%* This 1s the latest data as of 05-JUL-91

Design Status

Planned total number of components to be d
(New, =odified, and reused)

esigned

Number of components designed
(Prolcg and PDL have been completed)

Code Status

Planped total number of components tc be C
(New, —odified, and reused)

oded

(&)

Number of components completed 395
(Added to controlled library)

Testing Status System Acceptance
Total number of separate tests planned 59
Number of tests executed at least one time é A
Number of tests passed 3 X

Discrepancy Tracking Status (from beginning of system testing)

Total ~umber of discrepancies reported

2% 4

Total number of discrepancies resolved

(q ¥

Specificatien Modification Status (throughout entire life cycle)

Total rumber of specification modifications

received

3

Total rumber of spec. mods. completed (impl

emented)

13

Questions to Analysts Status (throughout entire life cycle)

Total number of questions submitted to ana

lysts

Total ~umber of questions answered by anal

ysts

Figure 3-6. Preprinted DSF

3-21
8201

for Update

Line-by-Line Instructions

Name: Enter the SEL database name of the project leader completing the form. Usu-
ally, the database name consists of a first initial followed by a last name. Questions
about database names should be referred to the SEL DBA. After the initial form, this
name will be preprinted on the forms distributed for update. If the project leader
changes, this name should be crossed out and the name of the new project leader writ-
ten in.

Project: Enter the acronym selected at project startup that uniquely identifies the proj-
ect being monitored. After the initial form, this name will be preprinted on the forms
distributed for update.

Date: Enter the Friday date corresponding to the week for which data are being re-
ported. After the initial form, this date will be preprinted on the forms distributed for
update. See hint 1 for a discussion of date tagging DSF data.

Design Status Section

Planned total number of components to be designed: Enter the total number of
components to be included in the system. This number should include new, modified,
and reused components to be developed on the project and maintained in the project’s
configured library. It does not include components that are reused by linking them to
the system from a source external to the project. A componentis a system element that
is developed, maintained, and tracked as a separate configuration item (i.e., it is main-
tained as a distinct member of the project’s configured library). This target number of
units may fluctuate, but should reflect the entire system and not just the target number
for the current build.

Number of components designed: Enter the number of components that have
beendesigned. A component is considered designed when a prolog and PDL have been
written, inspected, and certified. If the component does not contain executable code,
the design may not include PDL. However, it is still considered complete when it has
been inspected and certified.

Code Status Section

Planned total number of components to be coded: Enter the total number of
components scheduled for implementation. Refer to the Design Status Section for the
definition of a component and a discussion of what components are included in this
target.

Number of components completed: Enter the number of components that have
been coded, unit tested, certified, and added to the configured library. For cleanroom
projects, components should be counted as complete when they have been certified and
moved into the configured library for testing, since unit testing is not a part of that
methodology.

3-22
6201

Testing Status Section (System Test Column)
See hint 3 for a general discussion of test data tracking.

Total number of separate tests planned: Enter the number of tests to be conducted
during system testing.

Number of tests executed at least one time: Enter the number of tests that have
been executed for the first time, regardless of whether they passed, failed, or could not
be evaluated.

Number of tests passed: Enter the number of tests that have been executed and
evaluated as having passed successfully.

Testing Status Section (Acceptance Test Column)
See hint 3 for a general discussion of test data tracking.

Total number of separate tests planned: Enter the number of tests to be conducted
during acceptance testing.

Number of tests executed at least one time: See instructions under Testing Status
(System Test Column).

Number of tests passed: See instructions under Testing Status (System Test
Column).

Discrepancy Tracking Status Section

Total number of discrepancies reported: Enter the cuamulative number of software
discrepancies reported since the start of system testing. A discrepancy is a reported oc-
currence of the software’s performing incorrectly. Discrepancies are tracked internally
on each task by such mechanisms as problem reports (PRs), software trouble reports
(STRs), or SFRs. A discrepancy may or may not result in a change to the software, de-
pending on its resolution.

Total number of discrepancies resolved: Enter the cumulative number of software
discrepancies resolved since the start of system testing. A discrepancy is resolved when
its cause has been isolated and, if necessary, corrected. Generally, a discrepancy is re-
solved when the PR, STR, or SFR on which it was reported has been closed out.

Specification Modification Status Section

Total number of specification modifications received: Enter the cumulative
number of specification modifications that have been received from the analysts and
approved by the ATR for implementation.

Total number of specification modifications completed: Enter the number of re-
ceived specification modifications incorporated into the system.

3-23
6201

Requirements Questions Status Section

Total number of questions submitted to analysts: Enter the cumulative number of
requirements questions submitted to the analysts for clarification of requirements or
specifications.

Total number of questions answered by analysts: Enter the cumulative number
of submitted questions answered by the analysts.

No Changes Section

Check here if there are no changes: Check this box if the data supplied by the SEL
on the current preprinted form have not changed.

6201

Helpful Hints

DSFs are to be submitted every other Friday. SEL personnel distribute the
preprinted forms with the most recently submitted data on the Wednesday
preceding the Friday on which DSFs are due. The data entered on the form
should reflect the most recent update the project leader has made to his/her
internal records of project status. The Friday date on the form does not mean
that a status measurement has to be taken on that date. For example, if the
project leader routinely updates internal records on Monday mornings, the
most recent Monday’s update would be recorded on the DSF dated the fol-
lowing Friday. The project leader should not wait until the following Monday
and submit the form late. The important thing is to be consistent so that the
interval between reporting periods is uniform over the life cycle.

The preprinted DSF distributed by SEL personnel includes the date of the
data that appear on the form (see Figure 3-6). In most cases, this will be the
date of the Friday 2 weeks prior, when DSFs were last submitted. If, how-
ever, a form was submitted late, it will probably not have been processed by
the time the preprinted forms for update are generated. In this case, the data
on the form will be 4 weeks old and the data date on the form will so indicate.
Thus, it is important to take note of this date. A common cause of errors is
the project leader’s thinking that no changes have occurred in a given meas-
ure over the preceding 2 weeks, but not realizing that the numbers printed
on the form represent data that are 4 weeks old.

Test data should be measured at the lowest level of detail tracked. Test plans
usually contain a series of individual tests, each of which may involve multi-
ple runs. Each of these runs, in turn, may have multiple items to be evaluated.
For best visibility into testing progress, the SEL recommends that testing be
tracked on the test-item level, which, in the FDD environment, is generally
the case for acceptance testing. If the system test plan does not call out indi-
vidual items to be evaluated, testing should be tracked to the level of

3-24

individual tests or test runs. Tracking a small number of high-level tests or
test series provides little visibility into the progress of testing.

4. Inthe FDD environment, more than one separately monitored development

' project may be generated from the same set of requirements and specifica-

tions. This most commonly occurs with the AGSS and telemetry simulator

for a given spacecraft. In these cases, requirements questions and specifica-

tion modifications may not be tracked separately for the two projects, since

they are written against the same requirements and specifications docu-

ments. When this happens, the SEL encourages project leaders to identify

the questions or specification modifications as to which systems they affect,

so that they may be tracked separately for DSF data collection. If this is not

possible, these data should be recorded on DSFs for one of the projects and

not for the other. This should be discussed at project startup, and a general

message should be entered to indicate that this combined tracking was per-
formed for the two projects in question.

3.2.1.3 SERVICES/PRODUCTS FORM (SPF)
General Information

The SPF (Figure 3-7) is completed by SEL data collection personnel to capture the
three types of weekly rate data that the SEL monitors automatically: computer re-
sources, growth history, and services effort. Although development personnel are
never required to complete or submit this form, it is crucial that project leaders under-
stand the data recorded on it and their role in facilitating the collection of those data.

Computer resources data are collected and recorded by the SEL weekly. On most com-
puters used by monitored projects, the SEL has access to accounting software that logs
the number of runs and the CPU hours used. The SEL defines a run to be a logon ses-
sion or a submitted batch job. On the FDF mainframe computers, the SEL tracks batch
jobs and interactive sessions separately. On the STL VAX computers, interactive ses-
sions and batch job submittals are combined to give a total number of runs.

Because projects often perform development activities on more than one computer,
the SEL collects CPU hours that have been normalized to the relative speed of a given
machine established to be representative of a particular class of machines. For exam-
ple, the STL VAX environment is a cluster of different members of DEC’s VAX family
of computers, including a VAX 11/780. Since projects developed in this environment
use more than one machine in the cluster, and since the different machines run at differ-
ent speeds, the accounting data for CPU hours are normalized to report all hours in
terms of VAX 11/780 equivalent hours. Similarly, in the FDF mainframe environment,
CPU hours are normalized to NAS 8040 equivalent hours.

The SEL does not record computer resources data for all projects. If a substantial por-
tion of the development work is performed on PCs or workstations to which the SEL

3-25

6201

SERVICES/PRODUCTS FORM

Project:
Date (Friday):

COMPUTER RESOURCES

Computer _ CPU Hours No. of Runs

GROWTH HISTORY

Components

Changes

Lines of Code

SERVICES EFFORT

Service Hours
Tech Pubs
Secretary
Proj Mgmt For Librarian's Use Oniy
Other Number:
Date:
Entered by:
Checked by:

NOVEMBER 1991

Figure 3-7. Services/Products Form

3-26
6201

6201G(13)-08

does not have access or for which accounting software is not available, computer
resources data will not be collected. This should be discussed at the project startup
meeting.

Growth history data are the second type of data collected on the SPE. Each week from
the time the project establishes a library for placing developed code under configura-
tion control, the SEL measures the number of components in the library, the number of
SLOC in the library, and the number of changes that have been made to components
since they were first entered into the library.

To collect the growth history data, the SEL maintains library monitoring tools in both
the FDF and STL computing environments. The FDF tool computes statistics from
one or more PANVALET libraries. The STL tool computes statistics from one or more
DEC Code Management System (CMS) libraries. It can also monitor a subset of a
library identified as belonging to a CMS “group.” These tools count the number of
library members to obtain a component count; they sum the number of records in all of
the members to obtain a SLOC count; and they compute changes by summing the ver-
sion (level, generation) numbers of each library member and subtracting from this sum
the total number of library members. This gives the number of changes made to com-
ponents after they initially were moved into the library at version (level, generation) 1.
Aswith computer resources data, growth history data are not monitored for projects to
whose libraries the SEL does not have access.

Services effort is the effort expended by all personnel who provide support services toa
given project but do not submit their hours to the SEL on a PRE. Services effort hours
are extracted from timecard accounting systems, where these records are available to
the SEL from the organizations being monitored. On projects where such records are
not available, services effort is not recorded. This should be established at the project
startup meeting.

Services effort falls into four categories. Tech Pubs support includes hours spent by
publications personnel involved in the production of project documentation. This in-
cludes editors, word processors, proofreaders, graphics professionals, and reproduc-
tion personnel. Secretary support includes hours spent by secretaries providing direct
support services to the project. Proj Mgmt support includes all hours charged to the
project by management personnel at levels above the first-line manager (who reports
his/her management hours on PRFs). Other support includes hours charged to the
project that do not fall into any of the other three support categories. This usually in-
cludes project control personnel, indirect secretarial support, and facilities personnel.

The project leader’s participation is essential in the collection of all three of the data
types collected on the SPE. In collecting computer resources data, the project leader
must keep SEL data collectors informed as to what computers are being used and what
accounts should be monitored. Similarly, he/she must tell the SEL what library or
libraries need to be monitored to measure growth history data. If a partial CMS library

3-27
6201

on the VAX is to be monitored, the CMS group must also be specified. The project
leader must also ensure that the SEL has access to the libraries in read-only mode.

For services effort data, the project leader must provide the accounting cost collection
numbers to be monitored. Usually, a SEL-monitored project corresponds to a single
task number in the accounting system. There are, however, cases where part of a proj-
ect (several subsystems, perhaps) is developed under a separate task number. In these
cases, the accounting data from the two tasks must be combined to reflect the total ser-
vices effort data for the project. The opposite case also occurs; that is, more than one
separately monitored SEL project is developed under the same task number in the
accounting system. When this happens, the project leader must meet with the SEL
DBA to establish a proration algorithm for splitting the services effort hours among the
projects.

The project leader must also specify the names of management personnel who report
their management hours on PRFs, so that these hours are not double counted as Proj
Mgmt hours.

In addition, secretaries who provide direct support to the project must be identified so
that their hours, which should be recorded as Secretary support, may be distinguished
from those of other secretaries providing indirect support to the project (whose hours
should be recorded as Other support).

To help project leaders keep track of information being monitored automatically on
their tasks, the SEL distributes a monthly report, called the Data Collection Status Re-
port (Figure 3-8). Each project leader receives a page of the report for each project for
which he/she is responsible. This report lists the computers and accounts being moni-
tored for computer resources data, the libraries being monitored for growth history
data, and the task numbers being monitored for services effort data. In addition, it lists
the types of forms currently being submitted on the project and the programmers from
whom the SEL expects to receive effort forms (PRFs, CLPRFs, or WMETFs) on a
weekly basis. .

Each montbh, it is the project leader’s responsibility to review the data collection in-
formation for his/her projects and to return the report to the SEL DBA with corrections
or an indication that the information is correct.

Line-by-Line Instructions
NOTE: These instructions are intended for SEL data collection personnel.

Project: Enter the acronym selected at project startup that uniquely identifies the proj-
ect being monitored.

Date (Friday): Enter the Friday date corresponding to the end of the week for which
data are being reported. Data are to be reported on this form for all work performed on
the project during the preceding Saturday-through-Friday period. Thus, the growth

3-28

6201

November 1991

Please update any information that has changed. Place in the SEL forms bin or re-
turn to the SEL DBA, GreenTec II, Room (#) by COB (date). If you have any ques-
tions, contact me at 301-794-####.

Project: PROJECTX Check here if there are
no changes

Forms Being Collected: PRF, COF, CRF, DSE, PEF
Computer: FDF mainframes
Account(s) Being Monitored: FBACC

Configured Library(s) Being Monitored:

FBPRO.PROJX.PAN
FBPRO.INC.PAN
FBPRO.PROJX.PANELS

Personnel Submitting Effort Forms:

Programmer 1 CSC
Programmer 2 CSC
Programmer 3 CSC

Service Resources Being Monitored: 99-111, 99-222

Figure 3-8. Sample Page From Data Collection Status Report

3-29
6201

history monitoring tools should be run on Fridays. Computer accounting reports that
SEL personnel are not responsible for generating may cover periods other than
Saturday through Friday. If this is the case, the first report run following the Friday date
on the form should be used.

Computer Resources

Computer: Enter the name of the computer (as it appears in coded form in the
COMPUTER table of the database) for which hours and runs are being recorded.

CPU hours: Enter the CPU hours used during the week (for the above computer) in
decimal form to the nearest tenth of an hour.

No. of runs: Enter the number of runs (an integer) executed during the week for the
above computer.

Growth History

Components: Enter the number of components in the system as reported by the SEL
growth history monitoring software for the week being recorded.

Changes: Enter the cumulative number of changes to the system as reported by the
SEL growth history monitoring software for the week being recorded.

Lines of code: Enter the number of lines of code in the system as reported by the SEL
growth history monitoring software for the week being recorded.

Services Effort

Tech pubs: Enter the number of hours charged to the project by technical publications
personnel during the week being recorded.

Secretary: Enter the number of hours charged to the project by secretarial personnel
directly supporting the project during the week being recorded.

Proj mgmt: Enter the number of hours charged to the project by project management
personnel during the week being recorded. Do not include hours for managers whose
hours have already been reported on a PRF for the week in question.

Other: Enter the number of hours charged to the project by all other support personnel
not included in the three previous categories during the week being recorded.

Helpful Hint

To obtain an accurate picture of system growth, the SEL requests that the follow-
ing guidelines be adhered to when performing configuration management of
source libraries. '

e Move new components into the library at version or level 1.

e Move new componentsinto the library when they have been coded and tested
(and a COF has been completed), not when they have merely been designed.

3-30
6201

6201

In other words, do not use the configured source library for storing PDL or
prologs. Instead, the use of a separate design library is recommended.

e FEachtime acomponent is updated in the library, increase the version number
by one.

e Do not reset level numbers.

e Do not delete history records produced by the configuration management
tool. This information is very important when the project is being closed out.

e Do not maintain more than one copy of a given component even if there 1s
more than one configured library.

The last item is particularly important. Not only does it make good sense from a
configuration management point of view to maintain a component in only one
place, but if the same component appears in more than one library, it will be
counted twice when monitoring growth history. In addition, if the version num-
bers are different in the two libraries, the SEL has no way of knowing which to use
in counting changes. To prevent problems in collecting growth data, the project
leader must regularly communicate changes in the names of configured source li-
braries that the SEL should be monitoring.

A common problem in counting changes arises when updated modules are copied
from the developer’s work library into the configured library at the version num-
ber of the component in the work library. If the developer updated the component
several times in the work library before determining that the change had been cor-
rectly implemented, the new version number would show that more than one
change had been made, which is clearly not the case. One way of avoiding the
problem is to use a configuration management tool, such as the CMS on the VAX.
If using PANVALET libraries on the IBM, the PANVALET Move/Copy function,
available under the Software Development Environment (SDE) (Reference 11),
will maintain level numbers correctly.

To provide a cross-check between developer-submitted data and SEL-monitored
data, the SEL produces and distributes to project leaders monthly graphs that
compare the number of COFs submitted and changed components appearing on
CRFs with the number of components and changed components, respectively,
measured by the SEL and recorded on SPFs.

A final note concerns implementation in builds where different configured li-
braries are used in different builds. When making the transition from one build to
the next, the new configured library should initially contain components at the ver-
sions atwhich they existed in the old configured library. When this occurs, the SEL
must be notified of the new library name and location. It will then be assumed that
no more updates will be made to the old configured library, and the SEL will not
continue to monitor it.

3-31

3.2.2 Event Data

In contrast to rate data, which are collected with a predetermined periodic frequency,
event data are submitted to the SEL sporadically, when given events in the software
development process occur. Referring to Table 2-8, event-driven forms collected dur-
ing development include the CCF, COF, CRF, PMF, and SIF. The SIF, COF, and CCF
are used to capture data on system elements. The CRF is used to capture change and
error data that characterize modifications made to the software products after they are
initiaily placed under configuration control. The PMF is used to record messages,
which may be submitted any time during the life cycle to capture auxiliary information
about a project. These five forms are discussed in the following sections.

3221 SUBSYSTEM INFORMATION FORM (SIF)
General Information

The event that drives the completion of the initial SIF (Figure 3-9) is the Preliminary
Design Review (PDR). According to the SEL methodology, that is when a high-level
partitioning of the system into subsystems should have been accomplished. As the sys-
tem is further decomposed into its lowest level elements, or components, in detailed
design, it is essential to have a naming convention in place for referring to the compo-
nents. This naming convention should associate each component with a subsystem in
the design of the system. It is this aspect of the component-naming convention that the
SIF is intended to record. :

As mentioned in the discussion of the PEF (Section 3.1.2), the term “subsystem” has a
slightly different interpretation in the context of the subsystem prefixes entered on the
SIE. Rather than referring strictly to the logical partitioning of the system present in the
high-level design, on the SIF a subsystem refers to a mutually exclusive partitioning of
the low-level components that make up the system. This allows each component of the
system to be a member of exactly one subsystem. The subsystem prefix is then used
when completing COFs (Section 3.2.2.2) to establish that membership relationship.

The distinction is subtle. In general, every logical subsystem present in the system de-
sign should appear on the SIF. In addition, however, there may be classes of compo-
nents that are used in more than one logical subsystem and should be assigned distinct
subsystem prefixes. FORTRAN COMMON blocks, for example, are usually main-
tained as separate files in the FDD environment and are “included” into the appropri-
ate routines at compile time. The SEL recommends that these components be grouped
under a common subsystem prefix, such as CM. Even if a COMMON block is refer-
enced exclusively by routines belonging to a single logical subsystem, it should be
associated with the CM prefix. This simplifies the compilation of component- and sys-
tem-level size statistics at the end of the project. Other classes of FORTRAN compo-
nents that are usually grouped together are NAMELIST components, BLOCK DATA
components, and commonly referenced utility routines.

The examples noted in the preceding paragraph do not apply to Ada projects. The
object-oriented design approach used on Ada projects in the FDD environment does,

3-32
6201

SUBSYSTEM INFORMATION FORM

Name:
Project: Date:
Add New Subsystems
Subsystem Subsystem Subsystem
Prefix Name Function

Change Existing Subsystems

Action
Old Subsystem Prefix (R - Rename, New Subsystem Prefix
(Must exist in the database) D - Delete) (Must not exist in the databasae)

This form is to be completed by the time of the Preliminary Design Review (PDR). An update
must be submitted each time a new subsystem is defined thereafter. This form is also to be
used when a subsystem is renamed cor deleted.

Subsystem Prafix: A prefix of 2 to0 5 characters used to identify the subsystem when naming
components
Subsystem Name: A descriptive name of up to 40 characters
Subsystem Function: Enter the most appropriate function code from the list of functions below:
USERINT: User Interface
- DPDC: Data Processing/Data Conversion
For Libranan's Use Onl REALTIME: Real-time Control
Number: MATHCOMP: Mathematical/Computational
Date: GRAPH: Graphics and Special Device Support
Entered by: CPEXEC: Control Processing/Executive
Checked by: SYSSERV: System Services
NOVEMBER 1991

Figure 3-9. Subsystem Information Form

3-33

6201

6201G(13)-39

however, allow logical subsystems to be nested within other logical subsystems. Ob-
viously, this type of situation would not provide a mutually exclusive partitioning of sys-
tem components. The rule of thumb is that, for SEL purposes, an Ada component
belongs to the lowest level subsystem of which it is a member.

Itisimportant to note that, in addition to being the prefixes that will be used on COFs to
establish subsystem membership, the prefixes entered on the SIF should be used in the
names of components (files) in the project’s configured library. At the end of develop-
ment, SEL personnel must reconcile the components in the configured library with the
names that have been submitted on COFs so that component-level statistics may be re-
corded. In addition, following this guideline will help developers to complete COFs
correctly, since they will not have to remember different naming conventions for file
names and SEL forms.

Completion of the SIF is the responsibility of the project leader. An initial SIF is ex-
pected at the time of PDR. Additional SIFs may be submitted any time thereafter when
subsystems are added to the design. They may also be submitted to delete a subsystem
that is no longer a part of the design or to rename a subsystem.

Line-by-Line Instructions

Name: Enter the SEL database name of the project leader completing the form. Usu-
ally, the database name consists of a first initial followed by a last name. Questions
about database names should be referred to the SEL DBA.

Project: Enter the acronym selected at project startup that uniquely identifies the
project being monitored.

Date: Enter the date on which the form is completed.

Add New Subsystems

Subsystem prefix: Enter the 2- to S-character subsystem prefix used to identify the
subsystem in the SEL database. When naming system components, this prefix will be-
come the first characters of the component name to show the subsystem to which the
component belongs. When the file-naming convention involves separating the prefix
and component name with an underscore, the underscore is not considered part of the
prefix. Do not include the underscore when entering the prefix on SEL forms.

Subsystem name: Enter a descriptive name of up to 40 characters that specifies what
role the subsystem plays in the overall system design, e.g., data adjuster, telemetry proc-
essor, truth model, NAMELIST components.

Subsystem function: Select the one subsystem function from the list provided on the
form that best describes the type of processing performed by the subsystem. Sometimes
a subsystem may provide more than one of the functions listed. In such cases, the pre-
dominant function of the subsystem should be chosen. As an example, a user interface

3-34

6201

subsystem that interfaces with system services to put menus on a screen would have a
function of USERINT rather than SYSSERV. In other situations, two functions may
apply in which one function is more specific than the other. In this case, the more spe-
cific function should be chosen. For example, if a subsystem is implementing mathe-
matical algorithms to provide real-time control functions, REALTIME should be
chosen over MATHCOMP. See hint 3 for additional pointers.

Change Existing Subsystems

Old subsystem prefix: Enter the prefix of the subsystem to be renamed or deleted.
This prefix must already exist in the database (i.e., it must previously have been sub-
mitted on an SIF).

Action: Enter “R” to rename the subsystem prefix or “D” to delete it from the data-
base. (See hint 1 for restrictions on renaming and deleting subsystem prefixes.)

New subsystem prefix: Enter the new name of the prefix being renamed. This new
prefix must not already exist in the database.

Helpful Hints

1. When deleting or renaming subsystems, be sure to consider what will happen
to any components that may belong to the existing subsystem. The rename
option cannot be used to move all of the components under one subsystem
to another subsystem that already exists. This must be accomplished by re-
naming the individual components using the CCF (Section 3.2.2.3). Addi-
tionally, a subsystem cannot be deleted if there are components in the
database that belong to it. Those components must be either deleted or re-
named (via CCF) before the old subsystem can be deleted.

2. If individual components will be reused by linking them to the system in ob-
ject form from RSL, MTASS, or MSASS, prefixes for these reuse sources
must be provided. The RL prefix has been reserved to identify components
reused from the RSL. The prefixes MTASS and MSASS are reserved for
reuse from those two sources. COFs will be completed for individual com-
ponents linked in from any of these sources. An MTASS or MSASS prefix
need not be provided, however, if only complete subsystems are being re-
used, rather than individual components. This type of reuse does not require
the completion of COFs. It should, however, be noted at the project startup
meeting and confirmed with SEL personnel at project completion so that size
statistics from those subsystems may be included in the final project size com-
putations.

3. Questions sometimes arise about what subsystem function should be listed
for a prefix that does not correspond to a functional subsystem in the
high-level system design. The following guidelines for the examples of this

1 3-35

8201

type of subsystem discussed under General Information will apply in most

cases:
FORTRAN COMMON block components: DPDC
FORTRAN NAMELIST components: USERINT
FORTRAN BLOCK DATA components: DPDC

3.2.2.2 COMPONENT ORIGINATION FORM (COF)
General Information

The COF (Figure 3-10) is used to record information that characterizes each compo-
nent in the system at the time it initially becomes part of the system. It is completed by
the developer responsible for coding and unit testing the component. The developer
passes it on to the project leader or configuration manager so that configuration in-
formation may be recorded.

From a SEL data collection point of view, a software system at the lowest level is com-
posed of elementary pieces called components. A component, as viewed by the SEL, is
any piece of the system that is maintained in a separate file. Thus, a component does
not necessarily have to correspond to an executable module in the system’s imple-
mentation language. For example, a FORTRAN COMMON block is considered a
component if it is maintained in its own file for the purpose of “including” it in other
components at compile time. Also, if a single file contains more than one subroutine,
procedure, or function, as in the case of nested procedures in Pascal and Ada, or multi-
ple entry points in a FORTRAN subroutine, for example, the file itself is considered a
component rather than each of the nested subroutines or procedures. This definition of
a component is to be used when completing COFs.

The event that drives the completion of a COF is the origination of a component. A
component is “originated” when it has been unit tested and is ready to be moved into
the project’s configured source library. A COF may be completed earlier than the im-
plementation phase when the code is produced as part of the design effort (e.g., an Ada
package specification). However, it should not be completed to record the origination
of a component design (prolog, PDL) that is configured into a design library. The COF
is designed to be used by the project configuration manager as well as by the SEL.
When the component is physically transferred from the developer’s library into the con-
figured library, the configuration manager adds the configuration date to the form.
After that, the component is considered to be under configuration control.

The conventions for identifying individual components in a system, as well as the sub-
system to which they belong, should have been discussed in the project startup meeting.
Before any COFs may be submitted, an SIF must be submitted to identify prefixes used
in the component-naming convention. A SEL component name consists of two parts: a
prefix of 2 to 5 characters that uniquely identifies the subsystem to which a component
belongs, and a name of up to 40 characters that identifies the component within the

3-36

6201

COMPONENT ORIGINATION FORM

Identification

Name:
Project: Date:

Subsystem Prefix:

Component Name:

Configuration Management Information
Date entered into controlled library (supplied by configuration manager):

Library or directory containing developer's source file:

Member name:

Relative Difficulty of Developing Component
Please indicate your judgment by circling one of the numbers below.

Easy Medium Hard
1 2 3 4 5
Origin

It the component was modified or derived from a different project, please indicate the
approximate amount of change and from where it was acquired; if it was coded new (from

detailed design) indicate NEW.

NEW For Librarian's Use Only
Extensively modified (more than 25% of Number:

statements changed) Date:

Slightly modified Entered by:

Old (unchanged) Checked by:

If not new, what project or library is it from?
Component or member name:

Type of Component (Check one only)

INCLUDE file (e.g., COMMON}) BLOCK DATA file
Control language (e.g., JCL, DCL, CLIST) Ada subprogram specification

ALC (assembier code) Ada subprogram body
FORTRAN source Ada package specification
Pascal source Ada package bedy

C source Ada task body
NAMELIST or parameter list Ada generic instantiation
Display identification (e.g., GESS, FDAF) Ada generic specification
Menu definition or help Ada generic body
Reference data files Other

Purpose of Executable Component

For executable code, please identify the major purpose or purposes of this component.
(Check all that apply).

I/O processing Control module
Algorithmic/computational Interface to operating system
Data transfer Process abstraction
Logic/decision Data abstraction

6201G(13) 38

NOVEMBER 1991

Figure 3-10. Component Origination Form

3-37
6201

subsystem. The combination of subsystem prefix and component name must uniquely
identify each component within the system. Thus, a system may have two components
with the same 40-character name as long as they belong to different subsystems and
have different subsystem prefixes. Ideally, the names chosen for the physical imple-
mentation of components (i.e., file names, library members) should be identical to the
SEL component names (subsystem prefix concatenated with a component name). As
discussed in the SIF instructions, at project completion the SEL reconciles the compo-
nent names entered into the database (via COFs) with the names of components that
appear in the project’s configured source library. If these names are not the same, the
project leader must provide a key showing the translation of SEL names to physical im-
plementation names.

Line-by-Line Instructions

Identification

Name: Enter the SEL database name of the programmer completing the form. Usual-
ly, the database name consists of a first initial followed by a last name. Questions about
database names should be referred to the SEL DBA.

Project: Enter the acronym selected at project startup that uniquely identifies the
project being monitored. Check with the project leader if unsure of the correct name.

Date: Enter the date on which the form is completed.

Subsystem prefix: Enter the prefixidentifying the subsystem to which the component
belongs. The prefix entered must have previously been entered into the database by
means of an SIF.

Component name: Enter the name of the component without preceding it with its
subsystem prefix. The component name may be up to 40 characters. The combination
of subsystem prefix and component name must uniquely identify a single component in
the system.

Configuration Management Information

Date entered into configured library: Enter the date on which the component is
physically transferred from the developer’s library to the project’s configured source
library. This date is usually entered by the configuration manager.

Library or directory containing developer’s source files: Enter the name of the
library (e.g., PANVALET library on FDF mainframes, CMS library on the STL VAX
cluster) or directory (e.g., VAX/VMS directory) in which the source code for the unit-
tested module resides. This field is to be completed by the developer for use by the proj-
ect configuration manager.

Member name: Enter the name of the component as it appears in the above library or
directory (e.g., PANVALET member name, CMS element name, VMS file name).

3-38
6201

This field is also to be completed by the developer for use by the project configuration
manager.

Relative Difficulty of Developing Component

Enter a subjective judgment of how difficult the component was to develop. This is not
necessarily the same as the complexity of the component. For example, when modify-
ing a reused component to meet system requirements, a component that performs a rel-
atively simple function may be difficult to modify if it is not clearly written and well
documented. The converse may also occur. A reused component may perform a very
complicated function yet may be easy to modify if it is well written. For a verbatim re-
used component, the difficulty lies in understanding the component well enough to in-
corporate it into the system.

Origin

Check one of the listed options to describe the source of the component. If it was newly
developed from the detailed design, check “new.” If it was reused from another source,
consider the amount of modification that was needed to make it meet system require-

ments and check one of the last three options. If the component is not new, be sure to
complete the following two fields.

If not new, what project or library is it from?: Enter the name of either a SEL data-
base project or a specific library from which the reused component was taken.

Component or member name: If a SEL database project was listed in response to
the preceding question, enter the SEL component name (including the subsystem pre-
fix) of that component in the source SEL project. If alibrary was listed, enter the mem-
ber name of the component in the library.

Type of Component

Check the one type from the options listed that best describes the component. Follow
the general rule of choosing the most specific type category that applies. For example,
although a FORTRAN COMMON block is FORTRAN source code, “INCLUDE file”
should be checked rather than “FORTRAN source.” Control language components
(JCL, DCL, CLISTS, etc.) that build the system (compile from source, link, etc.) are
usually not stored in the project’s configured source library, and COFs for these types of
procedures are not submitted. If, however, a control language module is employed
when the system is executing, that module is considered a configured part of the system,
and a COF should be submitted for it. The “display identification” category is used for
components written in a display language, such as the Graphics Executive Support Sys-
tem (GESS) (Reference 12) or the Flight Dynamics Application Framework (FDAF)
(Reference 13), both of which are institutional software packages used in the FDF envi-
ronment. Components written in vendor-supplied display languages, such as Interac-
tive System Productivity Facility (ISPF) (Reference 14) panels also fall under this

3-39
6201

category. The “menu definition or help files” category is used for ordinary data files
that are used by the application software to define displays or provide online help. The
“reference data files” are files used by the system that provide functionality and are not
input files that will be varied from run to run when the system is used operationally. An
example would be a file of information used by a simulator to translate and process
encoded ground commands. Such a file would be considered part of the configured sys-
tem (it could have been implemented in source code as an internal table) and a COF
identifying it as a “reference data file” should be submitted. The remaining categories
require no further clarification.

Purpose of Executable Component

Comoplete this portion of the form only if the type of component checked in the previous
item indicates that the component contains executable code or if the component is writ-
ten in Ada. This section should not be completed, for example, if the component is a
COMMON, a NAMELIST, a BLOCK DATA subprogram, or a reference data file. If
the component is executable, check all of the purposes that describe the functions per-
formed by the component. Descriptions of the purposes follow.

® [/O processing: A major function of the component is to read from or write to
disk files, tapes, display screens, or other peripheral devices. Examples in-
clude components that access an attitude history file and GESS or FDAF dis-
play screens.

® Algorithmic/computational: A major function of the component is to perform
computations that implement a mathematical algorithm specified in the sys-
tem requirements or functional specifications. Examples include compo-
nents that model a spacecraft sensor or propagate spacecraft attitude.

® Data transfer: A major function of the component is to manipulate data,
transferring them to and from internal data structures. Examples include
components that pack or unpack telemetry records or transfer data from one
data structure to another.

® Logic/decision: A major function of the component is to make decisions that
affect the paths that are executed in the system. Examples include compo-
nents that route messages to various destinations based on evaluating an ad-
dress or that determine what type of orbit propagator to invoke, based on a
user-supplied flag.

® Control module: A major function of the component is to control the overall
process flow of the system or of a subsystem. Examples include driver com-
ponents that control the order in which major functions are invoked or com-
ponents that schedule the execution of discrete events in a spacecraft
simulator.

® Interface 10 operating system: A major function of the component is to provide
access to functionality supplied by the host operating system. Examples

3-40
6201

6201

include components that provide access to VAX/VMS system services, MVS
direct access I/O functions, or the system clock.

Process abstraction: A major function of the component is to provide a tem-
plate for a given process, the detailed processing steps of which must be sup-
plied for it to do useful work. The most common examples of process
abstractions are implemented via Ada generics. A process abstraction for
modeling ephemeris, for example, would be a template for computing
ephemeris in which the object for which ephemerides are being computed
and the method for computing them are supplied as parameters. An Ada
generic that provides a template for a generalized process would be con-
sidered a “process abstraction.” The instantiation of the generic to imple-
ment a specific process, however, would not be.

Data abstraction: A major function of the component is to encapsulate acom-
posite data type and the operations that may be performed on it. A typical
example would be an Ada package used to define a data structure, such as a
stack, and all the operations used to access it. In this case, the package speci-
fication and body would be considered to have a purpose of “data abstrac-
tion,” but individual routines separate from the body would not.

Helpful Hints

One of the most common mistakes made in completing COFs arises from not
understanding the distinction between the subsystem prefix and the compo-
nent name. Because the name of the library member is usually a concatena-
tion of these two identifiers and because the library name is often referred
to as the component name by developers, there is a tendency to duplicate the
prefix when writing the component name on the COF. The following exam-
ples should clarify this.

Example 1

Library name: UTMATMPY
COF subsystem prefix: UT
COF component name: MATMPY (not UTMATMPY)

Example 2

Library name: SHEM_SPACECRAFT_BODY.ADA
COF subsystem prefix: SHEM
COF component name: SPACECRAFT_BODY

The first example is a typical PANVALET library member name, where the
prefix is simply the first two characters of the member name. The second ex-
ample is a typical VAX CMS library element name. Note that, since longer
names are permitted, the convention is to separate the prefix from the

3-41

component name with an underscore. The underscore, however, is not
entered on the COF, either as part of the prefix or as part of the name. Note
also that the file extension (.ADA) included in the library element name is
not included when writing the component name on the COF.

2. Theone exception to hint 1 comes when reusing individual components from
either MTASS or MSASS. Inthis case, the reserved prefix MTASS or MSASS
is entered as the subsystem prefix, and the entire library member name (in-
cluding what would normally be considered the subsystem prefix) is entered
in the component name field on the COF.

3.2.23 COMPONENT CHANGE FORM (CCF)
General Information

Occasionally a component is no longer needed and is deleted from a project’s config-
ured library. If this happens, the project leader submits a CCF (Figure 3-11) to have
the component deleted from the database. A CCF can also be used to correct compo-
nent names that have been entered into the database incorrectly. Similarly, when com-
ponents in the project’s configured library are renamed, the CCF is used to rename the
components in the database.

Line-by-Line Instructions
Name: Enter the SEL database name of the project leader submitting the form.

Project: Enter the acronym selected at project startup that uniquely identifies the
project being monitored.

Date: Enter the date on which the form is submitted.

Old component: Enter the name of the component to be changed as it currently exists
in the database. Include both the subsystem prefix and the 40-character component
name. When the file-naming convention involves separating the prefix and component
name with an underscore, the underscore is not considered part of the prefix. Do not
include the underscore when writing the prefix on the SEL form.

Action: Enter “R” to rename the component or “D” to delete it from the database.

New component: Enter the new name of the renamed component. Include both the
subsystem prefix and the 40-character component name. When the file-naming con-
vention involves separating the prefix and component name with an underscore, the
underscore is not considered part of the prefix. Do not include the underscore when
writing the prefix on the SEL form. A name should be entered only if the action
selected is “R.”

342
6201

Name:

COMPONENT CHANGE FORM

Project:

Date:

This form is to be used when components in the project controlled source library are deleted or
renamed.

6201G(13) 37

Action
Old Component
. R - Rename New Component
(Must exist in the database) D — Delete
Prefix Name Prefix Name
NOVEMBER 1991
Figure 3-11. Component Change Form

6201

3-43

Helpful Hints

1. In contrast to renaming a subsystem via an SIF, where the new subsystem
name entered on the form must not already exist in the database, a compo-
nent may be renamed to the name of an existing database component. This
may be useful when two components are combined into a single component
that retains the name of one of the original components. The COF data
associated with the “new” component name will be retained, and the COF
data associated with the component being renamed will be deleted. Nearly
the same effect may be achieved by simply deleting the old component that
is being subsumed into the new one. This is not recommended, however,
since any changes made to the old component and reported on CRFs (Sec-
tion 3.2.2.4) would no longer be associated with any valid component in the
database, when the code that was changed now belongs to the new compo-
nent and changes made to that code should reference that component.

2. The rename option of the CCF can be used when components are moved
from one subsystem to another, simply by changing only the prefix when
entering the new component name. The new subsystem prefix, however,
must already exist in the database. The CCF cannot be used to create a new
prefix.

3.2.2.4 CHANGE REPORT FORM (CRF)
General Information

Once system components have been placed under configuration control, i.e., moved
into the project’s configured source library after having been successfully unit tested
and identified to the SEL on a COF, the SEL collects information on all subsequent
changes to the system that cause those components to be modified and replaced in the
configured source library. Each such change is documented by submitting a CRF (Fig-
ure 3-12).

The event triggering the submission of a CRF is the implementation of a logical change
to the system. A logical change may be made for any number of reasons, ranging from
requirements and specifications changes to error corrections. The implementation of a
logical change may require any number of individual components to be modified, yet
that single logical change is documented on a single CRF. Thus, the number of CRFs
submitted will not correspond one-to-one with the number of changes made to the proj-
ect’s configured source library.

The key to understanding a logical change is that it has a single, well-defined purpose.
For example, if the implementation of a requirements change requires 10 components
to be modified, the changes to those 10 components constitute a single logical change
and a single CRF is completed. If, however, while changing those 10 components, a
developer makes additional changes in one of them to correct an outstandin g error that

3-44
6201

CHANGE REPORT FORM

Name: Approved by:
Project: Date:
Section A - identification

Describe the change: (What, why, how)

Effect: What components are changed?

Effort: What additional components

Prefix Name

were examined in determining

what change was needed?

i
|
|
!

(Attach list If more space is needed)
Location of developer’s source files

month desy year

Check here i change invoives D

[Optimization of time/spacer
acouracy

[imei otreq (] Adspation 1o envirorsment
change change
[improvement of clarity, 1] Other (Describe beiow)

Need for change determined on: Ads companerts (if so, compiete
Change compieted (incorparated into system): questions on reverse side)
1heess 1hridsy 13days >3days
Effort in person time to Isolate the change (or efror):
Effort in person time to implement the change (or correction):
Section B — All Changes
Type of Change (Check one) Y N Effects of Change

[[J Was the change or correction o one and only one
component? (Must match Effect in Section A)

[(] Dtd you look st any cther component? (Must
match Effort In Section A)

O O oid you heve 1o be sware of parameters passed
expiicitty or implcily (a.g., COMMON biocks) to or

from the changed components?
Section C - For Efror Corrections Only
Source of Error Class of Error Characteristics
{Check one) {Check most applicable)* {Check Y or N for all)
{0 Requirements O Initisization I.Y:] DN
[Functionai specifications O ﬁﬁy;:m" Qmigaion error (e.g., something was left out)
{0 Design a '“"'J“‘(“"‘ 4“") o OO0 commission eror (ag. something incorrect was
\ N
0 Code D Intertace (externai) inciuded)
O previous crange 0 m:"“" °°"',"“"‘°"‘°'" O Error was creatad by trenscription (clericai)
O "9“"""9""’"’“““" For Ubrarian's Use Only
(e.g, arror in math expression) Number:
“1f two are equaly appiicabie, check the | D8t®:
Entered by:
one higher on the list. Checked by:
NOVEMBER 1991

Figure 3-12. Change Report Form (1 of 2)

345

6201

6201G(13) 09

CHANGE REPORT FORM

Ada Project Additional Information
1. Check which Ada feature(s) was involved in this change (Check all that apply)
[0 Data typing [0 Program structure and packaging
O subprograms O Tasking
[0 Exceptions O System-dependent features
O Generics [0 Other, please specity

(e.g., VO, Ada statements)

2 Foran gror invoiving Ada components:
a. Does the compiler documentation or the language

(YN)

reference manual explain the feature clearty?

b. Which of the following is most true? (Check one)
O Understood features separatety but not interaction
{0 Understood features, but did not apply correctly
{J Did not understand features fully
O Confused feature with feature in another language

€ Which of the following resources provided the information
neaded to corract the error? (Check all that apply)
O Class notes [0 Ownmemory
[J Ada reference manual [Somecne not on team
[OJ Own project team member [J Other

d. Which tools, if any, aided in the detection or correction of this error? (Check all that apply)
O Compiler [0 Source Code Analyzer

O Language-sensitive editor [0 DEC test manager
d cms O Other, specify

O symboiic debugger (0 P&CA (Performance and Coverage Analyzer)

3. Provide any other information about the interaction of Ada and this change
that you feel might aid in evaluating the change and using Ada

NOVEMBER 1991

Figure 3-12. Change Report Form (2 of 2)

346

6201

6201G(13)-13

had been discovered earlier during testing, that error correction constitutes a second
logical change. A second CRF must be completed for that change, even though the in-
dividual component involved may have been removed from the library, modified, and
replaced only one time.

The CRF is completed by the developer implementing the change once all affected
components have been modified and retested. The formisthen intended tobe used asa
configuration management tool for identifying to the project configuration manager
the components that were updated, their version numbers, and their location. The con-
figuration manager then makes the necessary library updates and notes on the form the
date that the change is configured into the system. The form also contains a field for
approval of the change. This is generally used by someone who reviews both the techni-
cal correctness of the change and the correctness of the information supplied on the
form. This approver is often the project leader.

Line-by-Line Instructions

Name: Enter the SEL database name of the developer completing the form. Usually,
the database name consists of a first initial followed by a last name. Questions about
database names should be referred to the SEL DBA. :

Project: Enter the acronym selected at project startup that uniquely identifies the
project being monitored. Check with the project leader if unsure of the correct name.

Approved by: This field is provided for use by a reviewer who has verified the techni-
cal correctness of the change and the accuracy of the information supplied on the form.
This reviewer is often the project leader, but may be a team leader, a peer developer, or
the configuration manager.

Date: Enter the date on which the form is completed.

Section A — Identification

Describe the change: Explain what change is being made, why the change is neces-
sary, and how the change is being made. Provide sufficient detail so that people other
than project staff can understand the change. The descriptionshould not be on the vari-
able name level, but it should be sufficiently abstract so that the function of the changed
code can be determined. For example, use “the input buffer was cleared,” rather than
“array BUFF was set to zero.” Where applicable, reference underlying documentation
that initiated the change, such as an STR number or the number of a specification modi-
fication.

Effect: Enter the names of all components that were modified and must be replaced in
the configured library. The names listed must consist of the subsystem prefix followed
by a component name of up to 40 characters. Ason the COF, underscores connecting a
prefix and a component name in the file-naming convention are not considered a part
of either. All components listed must already have been entered into the database by

347

6201

COFs. The version number, if available, should be supplied to assist the configuration
manager. This should be the configured library version number of the component when
it was checked out of the library for modifications, not the version number of the com-
ponent in the developer’s local directory or library, or the anticipated version number
at which the component should be replaced in the library.

Although the form has room for only a limited number of components, all components
affected by the change must be listed. This may be done by attaching a separate page to
the CRE. The prefix, component name, and version number of each component must
be clearly listed on the attachment.

Effort: Enter the names of all additional components that were examined, but not
changed themselves, while determining the exact nature of the change. This list should
not overlap the list of components actually changed. Version numbers need not be in-
cluded in this list.

Location of developer's source files: Enter the name of the library (e.g.,
PANVALET library for FDF mainframes, directory or CMS library for STL VAX com-
puters) in which the source code for the changed modules resides. This field is intended
for use by the project configuration manager.

Need for change determined on: Enter the date on which the need for the change
was first detected. For example, if the change involves an error correction, enter the
date on which the symptoms of the error first appeared-or were reported on an STR.
For implementing a specifications change, enter the date on which the specifications
modification was received. For a planned enhancement, the original configuration
date of the affected components may be used.

Change completed: Enter the date on which the changed components are physically
updated in the project’s configured source library. This field is intended to be com-
pleted by the configuration manager.

Check here if change involves Ada components: Put a check in this box if any of
the modified components listed is written in Ada. (Ifso, complete the questions on the
reverse side of the form.) (See Figure 3-12 (2 of 2).)

Effort in person time to isolate the change: Put a check in the box that indicates
how long it took to determine precisely what change was needed. This includes the ef-
fort required for understanding the change or finding the cause of the error, locating
where the change is to be made, and determining that all effects of the change are ac-
counted for. Note that this effort is to be reported in staff-days, not calendar days. Ifa
team of five developers spent a full day isolating an error, the “> 3 days” box should be
checked.

Effort in person time to implement the change: Put a check in the box that indi-
cates how long it took to implement the change. This includes design changes, code
modification, regression testing, and updates to documentation. Note again that effort
is to be reported in staff-days.

3-48

6201

Section B — All Changes

Type of change: Check the one change type from the list of change types that best
describes the change. If more than one change type applies, that may be a clue that
more than one logical change was made, in which case another CRF is required. There
are, however, cases in which some confusion might arise. Generally, the first type listed
that applies is the type that should be checked. Refer to the definitions below for clarifi-
cation.

® FEror correction: The change was made to correct an error that was
introduced earlier in the life cycle. This includes errors in the requirements,
the functional specifications, the design, or the code, as well as errors
introduced as the result of previous changes. If this change type is checked,
Section C of the CRF must also be completed.

e Planned enhancement: Code was inserted into a program stub that was ini-
tially created and configured as a dummy for testing purposes, or a planned
capability was added to an already existing component. The key word is
planned. The changed components must have initially been configured with
the knowledge that they would later be modified. Another example is the
addition of default values that were not defined when the component was
originally developed.

® Implementation of requirements change: A requirement or functional specifi-
cation was added, modified, or deleted. Usually, this type of change is the
direct result of a specification modification. However, if the specification
modification was written to correct an error in the requirements or specifica-
tions, the change should be recorded as an “error correction.”

e Improvement of clarity, maintainability, or documentation: Changes were
made to improve code quality, such as improving indentation or resequenc-
ing labels for readability, or adding or updating documentation or correcting
grammatical errors in it. Nothing was technicaily wrong with the software,
but changes were made to help future maintainers understand it better.
Note, however, that improving the clarity of a display screen, help message,
or any other end-user-oriented information should be classified as an “im-
provement of user services.”

e Improvement of user services: This type of change is intended to improve the
functionality, ease of use, or clarity of the system from the end-user’s point of
view. Do not check this category if the improvement was a “planned en-
hancement” orif it was required by a change in the requirements or specifica-
tions.

e Insertion/deletion of debug code: Changes were made to the program text spe-
cifically to provide additional information during test runs so that errors can

3-49

6201

be isolated. Also check this category when such changes are removed from
the program text.

® Optimization of ime/space/accuracy: A localized adjustment was made to the
program to reduce its execution time or memory or disk space requirements,
or to obtain results of greater numerical accuracy by “tuning” the algorithms
being used or converting to variables that allow greater precision. If the
change resulted from a specification modification that introduced a new per-
formance or accuracy requirement or made an existing one more stringent,
the change is an “implementation of requirements change,” and that cate-
gory should be checked rather than this one.

® Adaptation to environment change: This category should be checked when im-
plementing an unplanned change in response to a change that is outside of
the system boundary. This includes a change in hardware, operating system,
or compiler. This type should not be used if, for example, the changes were
planned in order to move the system from its development environment to its
target environment. It should also not be used if the change was initiated by a
requirements change.

® Other: This category should be checked only if none of the preceding cate go-
ries applies. Briefly describe the change type in the space below the checklist
on the form. .

Effects of change: For each of the three questions, check the appropriate answer
(“yes” or “no”). Note that the answers to the first two questions must agree with the
information supplied in the Effect and Effort items in Section A. Thus, if only one com-
ponentis listed under Effect, the answer to the first question must be “yes.” Similarly, if
there are any components listed under Effort, the answer to the second question must
be “yes.” The third question should be answered “no” only if all of the changes made
were localized to the components in which they were made. The intent is to record
whether component interfaces were involved in the change or potentially affected by
the change. Thus, for example, a change that affects values in a parameter list,
FORTRAN COMMON block, or state data in an Ada package would require that this
box be checked “yes,” even if no other components had to be changed as a result.

Section C — For Error Corrections Only

This section must be completed if the type of change indicated in Section B is “error
correction.”

Source of error: Check the one box that best indicates in which phase of the develop-
ment life cycle the error was introduced.

® Errors that originated in the requirements or functional specifications will nor-
mally be initiated by a specification modification. These would include such

3-50
6201

errors as an error in one of the equations used to specify an algorithm to be
implemented or the omission of a data item from a list of values required to
be output on a display or report.

Design errors are introduced in the process of transforming requirements and
specifications into detailed (component-level) design. An example would be
leaving a piece of required information out of a parameter list or omitting a
step in a computation when generating PDL.

Code errors are those errors that occur when transforming the detailed de-
sign to code, such as mistyping a variable name, incorrectly coding an assign-
ment statement, or incorrectly coding the exit criteria for a loop.

Finally, errors resulting from a previous change are those that were not in the
system until some other change was implemented (in which case the imple-
menter of the previous change did not consider all of its possible effects, or
the change was simply implemented incorrectly).

Class of error: Check the one box that best classifies the error. If the error seems to fit
into more than one class, check the first applicable class.

8201

Initialization: The error results from an incorrectly initialized variable, a fail-
ure to reinitialize a variable, or because a necessary initialization was mis-
sing. Failure to initialize or reinitialize a data structure properly upon a
component’s entry/exit would be considered an initialization error.

Logic/control structure (e.g., flow of control incorrect): The error stems from
an incorrect Boolean decision in a control structure. Errors causing an incor-
rect path to be taken in a component are considered logic/control structure
ErTors.

Interface (internal) (module-to-module communication): This is an error of
data exchange within the system. Included in this category are parameter
(calling sequence) errors, COMMON block errors, and errors in state data.
An error in initializing COMMON block variables is considered an interface
error and not an “initialization” error, because the COMMON block is used
by the module but is not part of its local environment.

Interface (external) (module to external communication): This is an error of
data exchange between some module in the system and some external entity,
such as system services, files, printers, or institutional software packages,
e.g., GESS and FDAF.

Data (value or structure) (e.g., wrong variable used): A data erroris any error
in the use of a variable or any error resulting from the incorrect use of a data
structure. Examples of data errors are the use of incorrect subscripts for an
array, the use of the wrong variable in an equation, the use of the wrong unit
of measurement, or the inclusion of an incorrect declaration of a variable
local to the component.

3-51

Computational (e.g., error in math expression): This is an error in which an
incorrect expression is computed, that is, a computation erroneously evalu-
ates a variable’s value. For example, a “+” was used where a “—~” should
have been used. This category does not include an error in which the wrong
variable was used in the calculation; that is a “data” error.

Characteristics: All three of these questions must be answered. They are to be inter-
preted as follows:

Omission error (¢.g., something was left out): Check “yes” whenever the error
was the result of missing code (even one statement or a part of one state-
ment). The code may be missing because of an omission in a previous phase,
such as a missing equation in the functional specification.

Commission error (e.g., something incorrect was included): Check “yes”
whenever the error resulted from wrong code as opposed to missing code. If
the error included both incorrect code and missing code, check “yes” for
both. There are no errors for which “no” is checked on both of these
questions.

NOTE: The above two questions are often misinterpreted. If something
incorrect is replaced with something correct, this is an error of
commission only. For example, if “X—-Y” is replaced with

“X+Y,” the fact that the minus sign was incorrectly included and - -

the plus sign was left out does not imply that the error was one of
both commission and omission. Something incorrect was in-
cluded and had to be changed, not added. Hence, it is an error of
commission only. This is a subtle, but important, distinction.

Errorwas created by transcription (clerical): Check “yes” only if the error was
actually caused by a transcription mistake. This includes keying mistakes,
spelling errors, etc.

Ada Project Additional Information (Reverse side of form)

This portion of the form must be completed if the box on the front side of the form is
checked to indicate that the change affected components written in Ada.

Question 1: Should be answered for all changes involving Ada components. Select the
category (or categories) that most closely characterize the change. A more detailed
description of the categories follows:

6201

Data typing: Includes predefined and user-defined scalar types, variables,
constants and actual parameters; subtypes and derived types; array types,
variables, and constants; array slices; named and positional aggregates;
string variables and constants; record types, variables, and constants; dis-
criminated and variant records; and dynamic memory allocation, i.e., data
structures using pointers.

3-52

Subprograms: Includes function and procedure calls, “return” statements,
named and default parameters, recursive subprogram calls, overloading of
subprogram names, and user-defined operators (+,-,*,/).

Exceptzons Includes predefined and user-defined exceptions, raising excep-
tions, “raise” statements, and handling exceptions.

Generics: Includes declarations and instantiations of generic packages, type
parameters, and subprogram parameters.

Program structure and packaging: Includes package specifications; package
bodies; package initialization; changes due to use of state information in
package bodies; scope and visibility of subprogram formal parameters; local
subprogram variables; variables declared in “block” statements; private and
limited private types; generic and standard package implementations or
instantiations of queues, linked lists, and stacks; changes, additions or dele-
tions of “with” clauses; removal of inappropriate “use” statements; block
statements; nesting of blocks, subprograms, packages, or tasks within other
blocks, subprograms, packages, or tasks; and restructuring of software com-
ponents (nesting vs. library units, subunits).

Tasking: Includes entry calls, task buffers, task priority, task types and ob-
jects, task activation, task termination, family of entries, and selective wait.

System-dependent features: Includes “delay” statements, objects of type
TIME and DURATION, use of CALENDAR, exception “time_error,” ad-
dress clauses, length clauses, enumeration representation clauses, record
representation clauses and alignment clauses, compiler directives (prag-
mas), importing of foreign code, predefined items and other environment-
dependent features, and Ada low-level features.

Other: Includes I/O features (Text_IO and instantiations of Integer_IO,
Float_IO, Enumeration_IO, Sequentlal IO, Direct_I10). If I/O was the
cause of the change and the change is the result of an error, either “interface
(internal)” or “interface (external)” should be checked under Class of Error
on side one. Other also includes changes to Ada assignment and control
statements and use of the “rename” statement. In this case, the class of error
(“logic/control structure,” “computational”) should reflect this choice. If this
category is selected, the feature involved must be supplied.

Question 2: Should be answered only if the type of change checked in Section Bon the
front of the form is “error correction.”

6201

Question 2a should be answered “no” only if the compiler documentation or
language reference manual was consulted when writing the code originally
and led to a misinterpretation of the use of a particular Ada feature. It should
be answered “yes” in all other cases, including those in which the documenta-
tion was not consulted.

3-53

Question 2b should be answered regardless of whether the error was directly
related to an Ada feature. Check the most applicable statement.

Questions 2c and 2d are intended to capture the tools and resources used in
isolating and correcting the error. Check as many items as apply.

Question 3: This question should be answered for all changes involving Ada compo-

nents.

6201

Helpful Hints

Perhaps the single most common error in completing the CRF occurs when
identifying the source of an error in Section C. Logic says that because one
is having to change code to correct the error, the “code” box is the one that
should be checked. What is really intended is to determine when in the life
cycle the error was introduced. The “code” box should only be checked if the
error was made while transforming the detailed design (prolog and PDL)
into code. If the PDL itself was wrong, the source of the error is “design.”
If the code correctly implements an incorrect requirement or specification,
the appropriate one of those two boxes should be checked. Errorsintroduced
by a previous change are a bit more difficult to identify, but revision histories
in component prologs should provide enough information to allow that de-
termination to be made.

When using the CRF as a configuration management tool, the configuration
manager must be aware that components may appear on more than one CRF
when being promoted from one version to the next, since they may be in-
volved in more than one logical change being implemented at the same time.
Those logical changes, however, should have been assigned to a single
developer so that not more than one team member is working on a given com-
ponent at the same time. It is suggested that, when possible, the team mem-
ber submit the CRFs for multiple logical changes affecting the same
component or components as a package, perhaps clipped together, to simpli-
fy the configuration manager’s job of determining precisely what compo-
nents need to be replaced in the configured source library.

A question that often arises is “What if the logical change involves adding a
component to the system or deleting a component from the system?” New
components resulting from the implementation of a change should be docu-
mented on COFs (Section 3.2.2.2) and should not be listed on the CRF.
Similarly, deleted components should be identified to the SEL via a CCF
(Section 3.2.2.3) and should not be listed on the CRE

Another common question is “If the error involves Ada components, but was
truly language independent (i.e., had nothing to do with the use of Ada), how
should Question 2b on the back of the form be answered?” In this case, there

3-54

was no misunderstanding of Ada features, nor of their interactions, so the
second response, “Understood features, but did not apply correctly,” should
be checked, even for something as simple as a misspelled variable name or
incorrect operator in an assignment statement.

5. Changes made to components linked to the system from external reuse |
sources (RSL, MTASS, MSASS) should not be reported on CRFs by the reus-
ing project.

3.2.2.5 PROJECT MESSAGES FORM (PMF)
General Information

The PMF (Figure 3-13) is completed by SEL data collection personnel to record gen-
eral information about a given project or the data that have been collected for it. Itis
not filled out directly by developers. The developers mayj, if they wish, submit to SEL
personnel specific messages that explain some aspect of the project or its data collec-
tion. More commonly, however, a data collection team member will draft and enter
messages based on conversations and other interaction with project personnel.

Line-by-Line Instructions
Name: Enter the name of the data collection team member completing the form.

Project: Enter the acronym selected at project startup that uniquely identifies the proj-
ect being monitored.

Date: Enter the date on which the form is completed.

Messages: Enter free format text that describes the information being documented
about the project.

Helpful Hint

To make these messages more readable when they are retrieved from the database
or output in reports, they should be organized for readability. Devoting separate
paragraphs to each major point is one technique. A bulleted list of major points is
another.

3.3 PROJECT COMPLETION

When SEL-monitored development projects are complete, and the software has been
delivered to maintenance and operations (end of cleanup phase), the project data
undergo a process of validation and verification referred to as “closeout.” This process
involves a final quality assurance of all data collected on the project, reconciliation of
the componentsstored in the SEL database against those in the delivered source library
of the project, and computation of final size and resource use statistics for the project..
Once the SEL has determined the final statistics for a project, the project data are

3-55

6201

Name:

PROJECT MESSAGES FORM

Project:

Date:

Messages:

NOVEMBER 1991

6201

Figure 3-13. Project Messages Form

3-56

6201G(13) 35

provided to the project leader for review. SEL personnel record the final statistics on a
PCSF, which they work with the project leader to validate and complete. They also col-
lect an SEF, which contains the consensus opinion of the managers involved in the proj-
ect on a list of subjective project attributes. Finally, any last annotations about the
methodologies employed on the project, unusual or unresolved anomalies in the proj-
ect’s data, and information about the data collection activities on the project that might
help users of the data to interpret them more accurately are recorded on a PMF (Sec-
tion 3.2.2.5).

One of the first steps listed above refers to reconciling components in the database with
those in the project’s configured source library. This is a necessary precursor to com-
puting final project size statistics broken down by code origin, which is done from
component-level size statistics since the component is the only system element for
which origin information is recorded (on COFs). Thus, the goal of this step is to map
every component for which the SEL received a COF to a source file in the delivered
system and vice versa. This process often involves requesting COFs from the project
leader for library components not found in the database, verifying and deleting COFs
for components that are no longer part of the system, and mapping database (COF)
names to file names in cases where naming conventions were not (or could not be) fol-
lowed and the two names are different.

Individual components reused by linking in object code from separately maintained
libraries (RSL, MTASS, MSASS) should also have database names reconciled with or
mapped to the file names in the source libraries for these reuse sources.

Once SEL personnel have matched database names to file names and the locations of
the files in source code libraries, they can then run the source code through line and
statement counting tools to compute component-level size statistics. Line counts are
computed for every component of the system. Comment counts are computed for every
FORTRAN or Ada component. This includes INCLUDE files. Statements and
executable statements are computed for every FORTRAN component that contains a
complete, compilable FORTRAN element (subroutine, function, BLOCK DATA).
Statements are also counted for every Ada component. The FORTRAN statements
and executable statements are counted, with INCLUDE files expanded, by running
them through the FORTRAN Static Source Code Analyzer Program (SAP) (Refer-
ence 15). SAP also produces a number of other metrics, and the reports it generates are
stored in hard copy form by SEL personnel for future reference and access by research-
ers. Figure 3-14 is a sample SAP output report.

Once component-level statistics have been entered into the database, project comple-
tion statistics may be summed. These are transferred by SEL personnel to a PCSE. At
this point, a member of the data collection team meets with the project leader and asks
him/her to verify the project completion statistics and to supply any that might be mis-
sing. The data collector and the project leader then examine the project data by viewing
them in various graphical representations. If any anomalies are observed, these are dis-
cussed, and possible causes are noted for documentation as project messages. At this

3-57

6201

interview, the project leader supplies any information about the project, its life cycle, or
the methodologies employed that may help researchers to understand the data col-
lected. The data collector documents the results of this interview and enters them into
the database by means of a PMF.

While the above steps are progressing, the data collection team also asks the GSFC
contact for the project to complete an SEF. When this has been completed and entered
and all of the above steps are also complete, the project is considered closed out, and
the data may be used for research.

33.1 Project Completion Statistics Form (PCSF)
General Information

The PCSF (Figure 3-15) is used to record the actual project schedule and project-level
size and resource use statistics at project completion. It is completed and entered one
time only. To facilitate its collection, SEL personnel complete the form as far as pos-
sible by summing lower level data to obtain project-level totals and recording those
totals on the form. They then ask the project leader to verify the data and provide miss-
ing information. Usually, the only field that the project leader must supply is the Pages
of Documentation field, which cannot be summed up from lower level data collected
during development.

The line-by-line instructions that follow outline how SEL personnel compute the values
they enter in each field and what the project leader should consider in verifying or up-
dating the information.

Line-by-Line Instructions

Name: Enter the SEL database name of the project leader who verifies and updates
the form. Usually, the database name consists of a first initial followed by a last name.
Questions about database names should be referred to the SEL DBA.

SOURCE ANALYZER PROGRAM V3 GLOBAL STATISTICS SUMMARY FILE Lue 8 AHFCMP SAGE
STL_DISK2: (SWDATA.SAP]ISAMPLE WT.SAP/-MO

MODULE DIRECTORY

MOOULE SOURCE EXEC N-EXC STATMENT [NFORMATION COUNT HALSTEAD "w**=® COMPLEXIT{TES *"wwe® pAGE KUMBER OF

NAME LINES CMTS STMT STMTS ASGN (/0 CNTL STRU INCL OTHER OPTR OPND CYCLO SEL JSERY USERZ NO. ERRS wWARN
1 AMFCMP suU 159 88 <3 32 19 5 13 5 g s 238 202 18 355.5 2.0 2.0 b 2l ¢
2 8LDOAT su 09 70 20 21 9 3 3 0 0 2 122 105 & i75.0 3 0.0 Q bl 3
3 BLDHED SU 812 196 426 247 210 2 214 0 0 9 2078 2254 T3 4709.0 1.2 0.9 a] b
4 BLONOX sU 151 34 33 35 710 16 o 0 5 181 154 11 201.5 P 2.0 2 3 3
S OMPNOX U 35 4 3 22 2 3 3 “] ¢ 52 82 3 105.5 :.0 a.9 0 J 2
4 PRANF SU 847 184 212 385 PR 7 b a 11695 1950 T2 1954.0 :.Q 0.2 3 3 3
7 WTHIST SU T&3 3N 161 %6 48 15 &7 30 i} 5 1248 1713 &9 2587.5 2.0 2.0 ot [J
3 WTINIT S 95 81 15 Al 5 & -] 2 G 2 80 30 5 134.5 2.9 2.9 bl 3 3

Figure 3-14. Sample SAP Printout (1 of 3)

3-58

6201

6201

SOURCE ANALYZER PROGRAM V3 GLOBAL STATISTICS SUMMARY FILE LUN 8 WTINGT PAGE 2
STL_DISK2: (SWOATA.SAP]SAHPLE_WT.SAP/-MO
swewe GICBAL SUMMARY *v=**
GLOBAL TOTAL NUMBER NUMBER NUMBER NUMBER SOURCE COOE COMMENT
MODULE MODULES MAINS SUBROUT INES FUNCTICNS BLOCXDATAS LINES LINES LINES
8 0 -] 3 s} 3021 1985 1036
MODULE LINES PER MODULE PROLOGUE COMMENT LINES
COMMENT ING TOTAL COOE COMMENT LENGTH EMBEDOED BLANK
STATISTICS 847 MAX. 663 MAX. 311 MAX, 190 MAX. 121 MAX. 33 MAX.
377.6 AVG. 268.1 AVG. 129.5 AVG. 86.6 AVG. 22.9 AVG. 19.1 AVG.
ENTRY POINTS SUBR. CALLS FUNCT. 3EF. EXTERNAL EXTERNALLY ASF ASF ARG. LIST LNGTH
MOOULE 0 TOTAL 168 TOTAL 2 TatAL NAMES JEF INED JEFINITIONS REFERENCES IN REFERENCES
COMMINICATION PER MODULE PER MODULE PER MODULE OEFINED REFERENCES PER MODULE PER MODULE TO SUBR/FUNCT.
STATIST! S 0 MAX 161 MAX 1 MAX 141 MAX 3 MAX G MAX 0 MAX 13 MAX
0.0 AVG 21.0 AVG 0.3 av6 21.5 AVG 0.0 AVG 0.0 AVG 0.0 avG 2.7 AVG
EXECUTABLE NON-EXECUTABLE MISCELLANEOUS
CNT. PCT. STATEMENT CNT. PCT. STATEMENT CNT. PCT. STATEMENT CNT. PCT. STATEMENT
STATEMENT B Lb.« EXECUTABLE 1059 53.6 NON-EXECUTABLE 3 0.0 NAMELIST
CLASS 320 16.2 ASSIGNMENT 16 0.8 SUBPROGRAM ‘1 3.8 DATA
COUNTERS 403 20.4 CONTROL 409 20.7 SPECIFICATION) 0.0 ASF DEFINED 9 0.0 INCLUDE
&5 2.3 STRUCTURED 01 20.3 °TYPE SPECIF. '68 8.5 FORMAT 21 1.1 OTHER
183 9.3 1/0
3 ASF QEF. 320 ASSIGNMENT 3 ACCEPT 3 ASSIGN Q AT 0 BACKSPACE
0 BLOCKDATA 3 BYTE 163 CALL 112 CHARACTER Q CLOSE 8 COMMON
0 COMPLEX 21 CONTINUE ‘T DATA 3 DEBUG 0 OECOOE 0 OEFINEFILE
0 OELETE 0 OIMENSION S DISPLAY 3 OOUBLECOMP 3 DOUBLEPREC 1 DOWHILE
12 00 0 EJECT ‘2 ELSELF 7 ELSE 0 ENCODE Q ENDOO
5 ENDDEBUG 0 ENDFILE 25 ENDIF 8 END O ENTRY 400 EQUIVALENC
0 EXTERNAL 0 FIND 168 FORMAT 0 FUNCTION 88 GOTO 3 .IF
127 (F 0 IMpLICIT 3 INCLUOE 0 INQUIRE <6 INTEGER 3 INTRINSIC
5 LOGICAL O NAMELIST) OPEN 1 PARAMETER 0 PAUSE 0 PRINT
0 PROGRAM 1 READ 238 REAL 3 RETURN 2 REMIND C REWRITE
0 SAVE o sTop 3 SUBROUTINE 3 THEN 0 TRACEOFF 1 TRACEON
9 TYPE 0 WALT 180 WRITE 0 UNDECODED G UNLOCK 3 VIRTUAL
[F STMTS BLOCKIF 50T0 STHTS 20 STMTS 00 LooP STHTS PER
CONTROL PER MODULE NESTING SER MODULE SER MODULE NESTING DEPTH 20 LOOP
STATEMENT MAX. AVG. MAX, AVG. “AX. AVG. MAX. AVG. MAX . AVG. “AX. AVE,
BREAKDOWN ke 15.9 3 1.9 70 11.0 o 1.5 2 1.2 15 5.9
ASSIGNMENT
STATEMENT VAR{ABLES PER ASSIGNMENT QPERATCRS PER STATEMENT SUBSCRIPT COMPLEXITY
BREAKDOWN 1.9 AVG. 7 MAX, 0.4 AVG. o MAX, 6 MAX. 1.1 AVG.
VARIABLES NAMED VARIABLES AEFERENCED EQUIVALENCED D[MENSIONS CHARACTERS
SPECIFICATION PER MODULE PER MOOULE NAMES PER MODULE PER ARRAY PER VARIABLE
STATEMENT MAX . AVG. EXEC. STMTS COMMONS MAX L AVG. MAX AVG. MAX . AVG.
SREAKDOWN 361 140.0 MAX. AVG. MAX. AVG. 326 125.3 2 1.0 [5.6
W2 66.5 7S 29.4

Figure 3-14. Sample SAP Printout (2 of 3)

3-59

SOURCE ANALYZER PROGRAM v3 GLOBAL STATISTICS SUMMARY FILE LUN 8 WTINIT PAGE 3
STL_OI5K2: [SWOATA.SAP) SAMPLE WT.SAP/-MQ

4HALSTEAD ANALYSIS
COMPLEXITY OPERATORS OPERANDS LEVEL SEL CYCLOMATIC QUALITY PREDICTED PREDICTED
ANALYSIS TOTAL UNIQUE TOTAL UNIQUE PROGRAM LANGUAGE COMPLEXITY COMPLEXITY INDEX PROGRAM LENGTH EFFORT REQUIRED

TOTAL 5694 178 6510 133 .13 11.059 10222.50 258 650.075 11681.0 129546224.0
MAX. 2ors 41 2254 412 3.045 5.980 4709.00 73 86.647 3798.0 119550830.0
MEAN 711.8 22,3 813.8 1646.4 J.016 1.382 1277.81 32.25 81.259 1460.125 16193278.000
$T0. DEV. 775.3 9.3 906.0 72.5 3.014 1.907 1575.29 30.58 L.22% 1554.032 39125912.000

Figure 3-14. Sample SAP Printout (3 of 3)

Project: Enter the acronym selected at project startup that uniquely identifies the proj-
ect being monitored.

Date: Enter the date on which the form is completed by SEL personnel and submitted
to the project leader for review and update.

Phase Dates

The phase dates entered by SEL personnel are those that appear on the most recent
PEF submitted by the project leader. These dates must be Saturdays. (See the discus-
sion of phase dates under the PEF instructions in Section 3.1.2.) The project end date
should be the date on which all system products (source libraries and documents) are
delivered to the organization that will be performing the maintenance and operations
phase. Note that a maintenance phase start date should not be supplied at this time.

Staff Resource Statistics

The fields in this area of the form are computed from previously collected data as de-
fined in the descriptions that follow. The project leader should check these totals
against His/her most recent estimates for effort expenditures and against effort expendi-
tures as recorded on organizational accounting records. Such comparisons will ob-
viously not result in direct matches, but should be used to provide a “sanity check” on
the final effort numbers being recorded. A large disparity might point to a problem in
the data collected on the project. This should be investigated by SEL personnel and an
annotation should be made via a PMF if a problem is found.

Technical and management hours: The total entered by SEL personnel is the sum
of the activity hours recorded on all PRFs, plus the sum of all project management
hours recorded weekly on SPFs.

Services hours: The total entered by SEL personnel is the sum of the support service
personnel activity hours recorded on SPFs (support services personnel include secre-
taries, technical publications personnel, couriers, project control, etc.).

3-60

6201

PROJECT COMPLETION STATISTICS FORM

for all blank fields.

the completion of the project. The values entered by
hand by SEL personnel reflect the data coilected by

the SEL during the course of the project. Update Date:
these according to project records and supply values

Name:
Project: Date:
Phase Dates (Saturdays) Staff Resource Statistics
Phase Start Date Technical and
Requirements Definition Management Hours
Design Services Hours
Implementation N
System Test Computer Resource Statistics
Acceptance Test Computer CPU hours No. of runs
Cleanup
Maintenance
Project End
"Project Size Statistics
Gaeneral Parameters Sourcs Lines of Code
Number of subsystems Total
Number of components New
Number of changes Slightly Mcdified
Pages of documentation Extensively Modified
oW
Comments
Executable Modules Executable Statements Statements
Total Total Total
New New New
Slightly Modified Slightty Modified Slghtly Moditied
Extensively Modified Extensively Modified Extensively Modified
Old Old o]s|
Note: All of the values on this form are to be actual values at For Librarian's Use Only

Number:

Entered by:
Checked by:

NOVEMBER 1991

Figure 3-15. Project Completion Statistics Form

6201

3-61

6201 G(39)- 11

Computer Resource Statistics

The fields in this area of the form are computed from previously collected data as de-
fined in the descriptions that follow. It is not expected that project leaders will have
kept their own records of computer use. Thus, no validation of the data in these fields is
necessary. The project leader should, however, verify that there is an entry for each
computer used on the project for which he/she provided account identifiers to SEL per-
sonnel for monitoring.

Computer: The computer names entered by SEL personnel are the abbreviated SEL
CPU names for each SEL-monitored computer used on the project.

CPU hours: For each CPU name listed, the total entered by SEL personnel is the sum
of CPU hours used during the life cycle of the project as measured by system accounting
software and recorded weekly by SEL personnel on SPFs.

Number of runs: For each CPU name listed, the total entered by SEL personnel is the
sum of runs made on that computer as measured by system accounting software and
recorded weekly by SEL personnel on SPFs. See the SPF instructions (Section 3.2.1.3)
for the definition of a computer run.

Project Size Statistics

The remainder of the PEF is used to record measures that characterize the size of the
final delivered product. Several of the subcategories under project size classify meas-
ures as new, slightly modified, extensively modified, or old. The Total field is always the
sum of these four categories. SEL personnel compute these classifications by summing
component-level size statistics with the components grouped by their “final” origin.
The components that fall into each of these “final” origin categories are as follows:

® New: All components for which the Origin field on the COF was checked
“new)’

® Slightly modified: All components for which the Origin field on the COF was
checked “slightly modified” plus all components for which the Origin field on
the COF was checked “old unchanged,” but which subsequently appeared as
changed components on one or more CRFs

® Extensively modified: All components for which the Origin field on the COF
was checked “extensively modified”

® (Old: Allcomponents for which the Origin field on the COF was checked “old
unchanged” minus those that subsequently appeared as changed compo-
nents on one or more CRFs

Generally, the project leader does not keep records of size statistics broken down into
these categories. It is not expected that he/she will be able to verify the breakdown

3-62
6201

against project records. He/she should, however, have records of total counts for these
size statistics and an idea of the level of reuse achieved. These should be used to per-
form a “sanity check” on the data, and any apparent discrepancies should be communi-
cated to SEL personnel for investigation.

Project Size Statistics—General Parameters

The fields in this area of the form contain high-level project size statistics. All but the
last field (Pages of Documentation) will have been completed by SEL personnel. A
description of these four fields follows.

Number of subsystems: The number entered by SEL personnel is the one that ap-
pears on the most recent PEF submitted by the project leader. This number should be
verified to represent the number of logical subsystems present in the design of the final
delivered system. This will not necessarily match the number of subsystem prefixes that
have been identified on SIFs. (See the discussion of subsystems under the PEF instruc-
tions in Section 3.1.2.)

Number of components: The number entered by SEL personnel is the total number
of COFsreceived on the project (after they have been reconciled with the project’s con-
figured libraries) plus the sum of the number of components present in each of the sub-
systems reused in its entirety from a generic reuse source (such as MTASS or MSASS).
Since these counts were to have been factored into the estimates supplied on PEFs, this
number should be fairly close to the number of components estimated on the most re-
cently submitted PEE

Number of changes: The number entered by SEL personnel is the actual number of
logical changes made to the system as reported to the SEL on CRFs. (See the discussion
of the CRF in Section 3.2.2.4 for a definition of what constitutes a “change.”) If the
project leader has kept separate records of system changes, this number should be veri-
fied against those records.

Pages of documentation: Sum and enter the total page count for the following types
of documents produced on the project. Note that this field is not completed by SEL
personnel. The project leader must supply this information.

e Software development/management plans (including any separate quality
assurance (QA) or configuration management (CM) plans)

® User’s guides (finals only)
e System descriptions (finals only)

e Designbook/detailed design notebook or document produced at Critical De-
sign Review (CDR)

e Test plans (integration, build, and system test—not acceptance test)

e Prologs and PDL (count 1 page per system component)

3-63

6201

Project Size Statistics—Source Lines of Code

As defined in the instructions for the PEF, SLOC is a count of carriage returns, or card
images. It includes code, comments, blank lines, and data. SEL personnel count SLOC
for every component for which a COF has been submitted, regardless of component
type. These counts are made without expanding INCLUDE files. Refer to general
instructions for project size statistics for a description of how size statistics are classified

by origin.
Comments: This number is a count of the source lines that begin with a comment iden-
tifier. Only FORTRAN and Ada source code components are included in this count.

As with SLOC, INCLUDE files are not expanded when counting comments. Blank
lines are not counted as comments.

Project Size Statistics—Executable Modules

These measures are computed by counting the number of COFs on which a Component
Purpose was recorded. (See Section 3.2.2.2.) Recall that a purpose is to be supplied for
all Ada components and for components of any other type that contain executable code.
Refer to general instructions for project size statistics for a description of how size sta-
tistics are classified by origin.

Project Size Statistics—Executable Statements

These measures are computed for FORTRAN source code components only. They are
generated by running the source code through the SAP program with INCLUDE files
expanded. The FORTRAN statements that are classified as executable are identified
in the KEYWORDS.SAP file, an input file to the SAP program. (See Reference 15 for
more detailed information on SAP and the classification of FORTRAN executable
statements.) Refer to general instructions for project size statistics for a description of
how size statistics are classified by origin.

Project Size Statistics—Statements

These measures are computed for FORTRAN and Ada source code components only.
The FORTRAN statements are counted by running the source code through the SAP
program with INCLUDE files expanded. The Ada statements are counted by running
the source code through a statement counting tool maintained by SEL personnel that
counts terminating semicolons (i.e., excluding those occurring in parameter lists). Re-
fer to general instructions for project size statistics for a description of how size statistics
are classified by origin.

Helpful Hints

1. Note that the final actual schedule, resource use statistics, and number of
changes characterize the process and the resources used to produce the

3-64
6201

3.3.2

portion of the final product actually developed by the development team.
The size statistics, however, characterize the entire final delivered product,
including certain application software reused by linking it in from external
sources. This distinction causes some project leaders to question the data re-
corded on the form when projects achieve a high level of reuse. A relatively
low expenditure of staff resources, for example, to develop a very large sys-
tem might give the impression that a much higher productivity was achieved
than that recorded by the project leader in his/her own monitoring of the
project. These are, however, the data that the SEL would like to record. Size
statistics must reflect the entire application so that comparisons with similar
applications will be valid.

Remember that the number of subsystems recorded on this form should in-
clude any subsystems reused in their entirety from application-specific reuse
sources, such as MTASS and MSASS. It is important to make sure that SEL
personnel are aware of these subsystems so that they may factor them into
total size statistics and record project messages documenting the fact that
they were reused.

Although the executable statements and statements measures may seem in-
tuitively to be a subset of the SLOC measures, they differ, as has been pointed
out, in that FORTRAN executable statements and statements are counted
with INCLUDE files expanded. Thus, some of the developed source code
is counted multiple times in taking these measures. The rationale behind this
is that the SLOC measure is intended to capture raw system size, whereas the
statement counts are intended to capture the volume of system code that
must be processed by a language processor or translator. Traditionally in the
SEL, executable statements was the measure that captured this. With the
introduction of Ada in the FDD environment, a definition of Ada executable
statements that would yield a size measure suitable for the comparison of
FORTRAN and Ada projects was not readily apparent. Thus, the measure
of total statements was introduced for both FORTRAN and Ada projects.
Executable statements are still counted for FORTRAN projects so that they
may be compared with older FORTRAN projects in the data base.

Subjective Evaluation Form (SEF)
General Information

To complement the objective statistics generated in the closeout process, the SEL re-
quests that the project’s GSFC contact, or ATR, complete an SEF (Figure 3-16). The
ATR is asked to solicit input from all of the project leaders (GSFC and contractor tech-
nical leads and line managers) and determine a composite answer for each of the ques-
tions on the SEF This information provides overall subjective opinions that
characterize the problem, process, environment, resources, and product.

6201

3-65

SUBJECTIVE EVALUATION FORM

Name:

Project: Date:

Indicate response Dy cirding the corresponding numeric ranxing.

PROBLEM CHARACTERISTICS
1. Assess the intrinsic difficulty or complexity of the oroblem that was addressed by the software development.

1 2 3 4 5
Easy Average Difficuit

2. How tight were schedule constraints on project?
1 2 3 4 5
Loose Average Tight

3. How stable were requirements over development perod?

1 2 3 4 5
Loose Average High

4. Assess the overail quality of the requirements specificaon documents, inciuding thesr ctanty, accuracy,
consistancy, and compieteness.

1 2 3 4 5
Low . Average High

5. How extensive were documantation requirements?

1 2 .3 4 S
Low Average High

6. How ngorous were formal review requiraments?

1 2 3 4 5
Low Average High

. PERSONNEL CHARACTERISTICS: TECHNICAL STAFF

7

. Assess overall quality and ability of development team.

H 2 3 4 <
Low Average High
8. How wouid you characterize the development team's expenence and familiarity with the apoiication area of
the project?
1 2 3 4 5
Low Average High

9. Assess the development team's expenence and familiarity with the development environment {hargware
and support software),

1 2 3 4 5
Low Average High

10. How stable was the compasition of the developmant team over the duration cf the projec:?

1 2 3 4 5
Loose Average High

FOR LIBRARIAN'S USE ONLY

Number:

Entered by:

Date:

Checked by:

6201G(13) 29

NOVEMBER 1991

Figure 3-16. Subjective Evaluation Form (1 of 3)

3-66
6201

SUBJECTIVE EVALUATION FORM

.

PERSONNEL CHARACTERISTICS: TECHNICAL MANAGEMENT

11. Assess the overall parformance ot projact management.
] 2 3 4 5

Low Average High

12. Assass project management's exparience and familiarity with the appiication.
5

1 2 3 4
Low Average High
13. How stable was project management during the oroject?
1 2 3 4 5
Low Average High
14, What degree of disciplined project planning was used?
1 2 3 4 5
Low Average High
15. To what degres were project plans followea?
! 2 3 < 5
Low Average High

. PROCESS CHARACTERISTICS

16. To what extent did the deveiopment team use modern programming pracices (POL, too-down
davelopment, structured programming, and coce reading)?
1 2 3 4 S
Low Average High

+7. To what extent did the davelopment team usa well-defined or discipiined oroceaures to record
speatfication moditications, requirements questions and answers, and intertace agreaments?
1. 2 3 4
Low Average High

18. To what extent did the development team use a wail-defined or disciplined recuirements analysis

methogology?
1 2 3 4 5
Low Average High
19. To what extent did the development team usa a well-defined or disciplined design methodoiogy?
1 2 3 4 S
Low Averags High
20. To what extant did the development team use a weil-defined or disciplined testung methodology ?
1 2 3 4 5
Low Average High

. PROCESS CHARACTERISTICS
21. What software tools wera used by the davelopment team? Check all that aooly from the iist that follows

and identify any other tools that wera usea but are not listed.

O comoiler TcaT
{0 Linker (] PANVALET
(3 editor [J Test coverage toal
{d Grapnic display builder {7 intertace cnecker (RXVPS0, atc.)
{7 Requirements ianguage processor O Language-sensitive editor
([structured analysis support tool T symnoiic debugger
[J POL procassor {7 Configuraton Management Tool (CMS, etc.)
dspPr O Cthers (identity by name and tunction}
O sAP
22. To what extent did the development team prepare ana foilow test plans?
1 2 3 £ 5
Low Average High

Figure 3-16. Subjective Evaluation Form (2 of 3)

3-67

6201G{13)-20

SUBJECTIVE EVALUATION FORM

IV. PROCESS CHARACTERISTICS (CONT'D)

23. To what extent did the development team use well-gefined and discipiined guality assurance procedures
(reviews, inspactions, ano waikthroughs)?
1 2 3 4 S
Low Average High

24. To what extent did deveiopment team use well-defined or disciplined configuration management
procecurss?

! 2 3 4 S
Low Average High

V. ENVIRONMENT CHARACTERISTICS

25. How would you charactenze the cevelopment team's degree of access to the daveiooment system?
1 2 3 4 5

Low Average High
26. What was the ratio af programmers ta terminais?
1 2 3 4 S
a:1 41 2:1 1:1 1:2

27. To wnat gegree was the deveiopment taam constrained by the size of main memory or difecl-access
storage avajiadie on the deveiopmant cystam?
) 2 3 4 5
Low Average High

23. Assess ing systam response ume: were the turnaround timas expernenced by (he team satistactory in
light of the size and nature of the jobs?

2 3 4 5
Peor Average Very Good
29. How stanie was the haraware and system suppart software (including ianguage orocessors) during the
project?
1 2 3 4 5
Low Average High

30. Assess ihe effectiveness of the software 10als.

' 2 3 4 5
Low Average High
Vl. PRODUCT CHARACTERISTICS
31. To what cegree coes the deliverea software provias tha capabilities specified in the requirements?
b 2 3 4 S
Low Avurage High

32. Assess the quality of the delivered software product.

1 2 3 4 5 °
Low Average High
33. Assess ine quaiity of the design that is present in the software produdt.
! 2 3 4 S
Low Average High
34, Assess (he quaiity and compieteness of the delivered systam documantatian.
1 2 3 4 5
Low Averags High
35. To what degree were software products delivered on time?
1 2 3 4 5
Low Average High

36. Assess smoothness or reiative easa of acceptance tasting.
i 2 3 4

Low Average High

6201

Figure 3-16. Subjective Evaluation Form (3 of 3)

3-68

6201G(13} 31

-~

Line-by-Line Instructions

Name: Enter the SEL database name of the ATR responsible for completing the form.
Usually, the database name consists of a first initial followed by a last name. Questions
about database names should be referred to the SEL DBA.

Project: Enter the acronym selected at project startup that uniquely identifies the proj-
ect being monitored.

Date: Enter the date on which the form is completed.

General Instructions

The questions on this form are self-explanatory. Therefore, no further line-by-line
instructions are provided. The form asks for retrospective subjective opinions in six
major areas of the software development effort. These areas are problem characteris-
tics, personnel characteristics (technical staff), personnel charactenstics (technical
management), process characteristics, environment characteristics, and product char-
acteristics. The 36 questions are grouped into these six categories. With the exception
of question 21, all questions require the circling of a single numeric response indicating
a subjective opinion. Question 21 requires an “X” or check mark in the box by each tool

listed that was used on the project.

Helpful Hint

The technique for collecting a composite opinion is left to the discretion of the
ATR. One suggestion is to have each technical lead or line manager complete a
copy of the form, compile the results, and try to resolve outlying rankings by dis-
cussing them with the individuals who gave them. Another option is to hold a
meeting of the individuals involved and come to a consensus in that setting.

3-69
6201

SECTION 4—DATA COLLECTION IN MAINTENANCE

This section presents detailed procedures for collecting SEL data during the mainte-
nance and operations phase of the software life cycle. It begins with a discussion of data
collection activities during the transition to maintenance, which may involve a change
in the organization responsible for the system. This is followed by an overview of data
collection activities during maintenance, which includes an outline of the maintenance
procedures followed on projects in the GSFC FDD environment. Lastly, detailed
instructions for completing the SEL data collection forms submitted during mainte-
nance are presented in the same format as those presented in Section 3 (i.e., back-
ground information, line-by-line instructions, and helpful hints).

4.1 TRANSITION TO MAINTENANCE

When the products of a SEL-monitored development project are delivered for opera-
tional use, the SEL initiates the collection of maintenance data. Often, the organiza-
tion responsible for maintenance is different from the organization responsible for
development. Thus, as in project startup, the first thing the SEL must do is establish
lines of communication with the maintenance team and obtain some basic information
about the project.

SEL data collection personnel schedule a meeting with the maintenance team to dis-
cuss maintenance data collection activities. This meeting should be scheduled as soon
as maintenance work begins on the system. This generally does not start until the sys-
tem has been accepted. There may, however, be some overlap with the collection of
development data, especially if the development team continues to work on final sys-
tem documentation and the project history report after the actual software is delivered.

The main purposes of this meeting are (1) to acquaint the maintainers with the SEL
data collection process and their role in that process, (2) to establish naming conven-
tions and identify team members who have not previously submitted SEL forms and
whose names will have to be entered into the database, and (3) to give the data collec-
tors an understanding of the maintenance process being followed and any peculiarities
that may have an impact on the accuracy or completeness of the data collected. An ex-
ample of such a peculiarity would be a maintenance effort that was split among two or
more organizations, with only one of whom the SEL has made arrangements to collect
data. Insuch acase, the data collected will be incomplete, and SEL personnel will note
this in the form of project messages so that researchers will understand the limitations
of the data.

SEL personnel use the PSF (Section 3.1.1) to document the information gathered at the
maintenance startup meeting. They complete the header information, contacts, forms
to be collected, general notes, and personnel names portions of that form. As in devel-
opment, it is very important to establish a single point of contact, or project leader, with

4-1

6201

whom SEL personnel will communicate on data collection issues. In addition, if the
project was not monitored by the SEL during development or is being maintained
under a different name from that used during development, the project full name, lan-
guage, and computer system fields are completed. Filling in the computer account and
task number fields is not necessary, since the SEL does not collect computer resources
data or services effort data during maintenance.

Two additional pieces of information the SEL must obtain at the startup meeting are
the names of the configured libraries to be monitored for growth and changes and the
scheduled duration of the maintenance activity. This last item, the schedule, is col-
lected in lieu of collecting estimates of the scope of the maintenance activity and the
effort that will be involved (as is done via the PEF during development).

The maintenance start date recorded should be the date on which the maintainers
assume responsibility for the system, regardless of whether the developers have com-
pleted and delivered all final documentation. The maintenance end date is the date on
which SEL monitoring of the maintenance activity is expected to cease. Generally, this
is either the point at which the system is transferred to an organization from which the
SEL does not collect data, or it is the estimated end of the operational life of the system.

4.2 DATA COLLECTION DURING MAINTENANCE

Once maintenance startup information and start and stop dates for the maintenance
phase have been collected, the SEL collects several types of data on a regular basis
throughout the maintenance phase. Data collected during maintenance and opera-
tions include maintenance effort and growth, which are rate data, and maintenance
changes/errors and messages, which are event data.

The maintenance life cycle, as performed in the GSFC FDD environment and docu-
mented in the Operational Software Modification Procedures (OSMP) (Reference 16),
centers on the concept of a logical change (as defined in Section 3.2.2.4). The cycle
begins with identifying the need for a change, be it an error correction, an enhance-
ment, or an adaptation to changes in the environment, and documenting it on an
Operational Software Modification Report (OSMR) form.

Sometimes changes are initiated by changes to the system requirements or specifica-
tions. The SEL does not collect data on the work performed to update these
documents, but rather collects data on the implementation of approved OSMRs.

Once the OSMR is approved, work on implementing the change begins. This includes
designing, coding, and testing the change. Once the maintainer has completed and
tested the change in his/her local library, there are two additional levels of testing that
are performed at two different levels of configured source code libraries: integration
testing and acceptance testing. Changes that successfully pass acceptance testing are
promoted to the operational library.

The SEL collects data through all of the above levels of maintenance activities. In some
cases, the different levels of testing are performed by different organizations. For

4-2
6201

example, a maintenance organization might perform the implementation of the change
and integration testing, after which an operations organization takes over for
acceptance testing. If the SEL has not established data collection agreements with one
or the other organization, the data collected will be incomplete. The segments of the
Operational Software Modification (OSM) life cycle for which the SEL does not
receive data should be noted as project messages, so that researchers looking at the
data will understand that there are pieces missing.

4.2.1 Maintenance Rate Data

Maintenance rate data collected by the SEL originate from two sources. One source is
the effort data supplied on WMEFSs completed and submitted by maintainers on the
project. The other source of rate data is growth data automatically monitored by the
SEL data collection team. The WMEF and maintenance growth data are discussed in
the following sections.

4.2.1.1 WEEKLY MAINTENANCE EFFORT FORM (WMEF)

During maintenance, effort data are collected on a WMEEF (Figure 4-1). This form is
analogous to the PRF and CLPRF (Figures 3-3 and 3-4, respectively) submitted during
development. It categorizes the hours spent by a given maintainer on the project along
two dimensions. The first is the class of maintenance change (or changes) being worked
on. The second is the breakdown of activities performed in implementing a change or
changes.

The WMETF is submitted weekly by every member of the maintenance team who per-
forms technical work on the maintenance effort. Recall that this does not include work
performed to update requirements or specifications. A WMEF is required from every
team member for each week he/she is assigned to the project, even for weeks in which
no hours are worked on the project (e.g., vacation or temporary assignment to another
project). The “zero-hour” form is the mechanism by which the SEL data collectors en-
sure that the effort data collected for a given week are complete. Project leaders re-
ceive reminder notices for all team members from whom the SEL does not receive a
form in a given week. The SEL keeps a list of maintainers assigned to each monitored
maintenance project and uses it to generate these reminders. The list is distributed to
project leaders to update each month as part of the data collection status report (see
Section 3.2.1.3).

Maintenance activity is often performed sporadically; i.e., there may be periods of
heavy activity alternating with periods in which little or no maintenance is performed.
Itis important nonetheless that the zero-hour forms be submitted, because the SEL has
no other mechanism for determining the level of maintenance activity on the projects it
monitors. If, however, there are personnel who perform maintenance activities on the
project infrequently, it is not reasonable for them to receive regular reminder notices.
Thus, it is up to the project leader to decide whether individual maintainers should be
included on the list of maintainers assigned to the project and, for those who are not

4-3

6201

Sor Lbranan's Use Qnly

WEEKLY MAINTENANCE EFFORT FORM —
Name: oate
Project: Date (Friday): Entered by
Checxed by:

Section A - Total Hours Spent on Maintenance
activities for the project axciuding writing specification modifications)

(Includes time spent on ail maintenance

Section B - Hours By Class of Maintenance
Saction A)

(Total of hours in Section B should equai total hours in

Definition

Hours

Hours spent on all maintenance associated with a system failure.

Hours spent on all maintenance associated with moditying the system due
to a requirements change. includes adding, deleting, or modifying system
features as a resuft of a requirements change.

Adaptation

Hours spent on all maintenance associated with modifyinga system to
adapt to a change in hardware, system sottware, or environmental
characteristics.

Other

Other hours spent on the project (related to maintenance) not covered
above. inciudes management, meetings, etc.

Section C — Hours By Maintenance Activity (Totl of hours in Section C shouid equai total hours in

above. Includes management, meetings, etc.

Section A)
Activity Activity Definitions | Hours

Isolation Hours spent understanding the failure or request for enhancement or
adaptation.

Change Hours spent actually redesigning the system based on an understanding

Design of the necessary change.

Implementation Hours spent changing the system to compiete the necessary change.
This includes changing not only the code, but the associated
documentation.

Unit Test/ Hours spent testing the changed or added components. Includes hours

System Test spent testing the integration of the compaonents.

Acceptance/ Hours spent acceptance testing or benchmark testing the modified

Benchmark Test system.

Cther Other hours spent on the project (reiated to maintenance) not covered

NOVEMBER 1991

6201

Figure 4-1. Weekly Maintenance Effort Form

4-4

6201G(39)-10

listed, to ensure that they submit WMEFs when they actually do perform maintenance
work on the project.

The SEL also expects that the project leader will help to assure the quality of data sub-
mitted on WMEFs by periodically scanning the forms submitted by team members to
ensure that the hours recorded match those the team member charged to the mainte-
nance cost collector in the organization’s timekeeping system and that the classification
of hours is appropriate for the types of activities being performed on the project.

Line-by-Line Instructions

Name: Enter the SEL database name of the maintainer completing the form. Usually,
the database name consists of a first initial followed by a last name. Questions about
database names should be referred to the SEL DBA.

Project: Enter the acronym selected at maintenance startup that uniquely identifies
the project being monitored. Check with the project leader if unsure of the correct
name.

Date (Friday): Enter the Friday date corresponding to the end of the week for which
data are being reported. Data are to be reported on this form for all work performed on
the project during the preceding Saturday-through-Friday period.

Section A

Total hours spent on maintenance: Enter the total hours actually worked on main-
tenance for the project for the current week. This includes any overtime, whether paid
or unpaid. It does not include paid hours not charged to the project, such as sick time,
holidays, or vacations. Note that this number must equal the sum of the hours recorded
under the maintenance classes in Section B, as well as the sum of the hours recorded
under the maintenance activities in Section C. If partial hours are recorded, enter them
in decimal form to the nearest tenth of an hour. Do not enter fractions. This also
applies to all hours entered in Sections B and C.

Section B

Correction: Enter the number of hours during the current week spent working on
OSMRs to correct system errors. This includes those that originated from errors in the
requirements or specifications.

Enhancement: Enter the number of hours during the current week spent working on
OSMRs to modify the system due to a requirements or specifications change. This
activity includes adding, deleting, or modifying system capabilities. It does not include
correcting errors in the requirements and specifications themselves.

Adaptation: Enter the number of hours during the current week spent working on
OSMRs to adapt the system for a change in hardware, system software, or environ-

4-5
6201

mental characteristics. This includes changes necessitated by an upgrade to the
compiler or operating system, changes to support a new or upgraded I/O device, or
changes needed to port the system to a different hardware platform.

Other: Enter the number of hours during the current week that were not spent working
on a particular OSMR. This category includes such activities as meetings, manage-
ment, and training, provided they are related to the maintenance of the system. Config-
uration management and documentation hours should be recorded here only if they
cannot be associated with specific OSMRs.

Section C

Isolation: Enter the number of hours during the current week spent isolating an error
or understanding a request for enhancement or adaptation. This includes running tests
to isolate the source of an error, analyzing specification modifications, or simply study-
ing system code to become familiar with the areas affected by a change.

Change design: Enter the number of hours during the current week spent redesign-
ing portions of the system based on an understanding of the necessary change. This
includes generating new design (diagrams, prologs, PDL) for implementing system
enhancements. It also includes time spent inspecting and certifying new and modified
design products.

Implementation: Enter the number of hours during the current week spent updating
code and documentation or generating new code and documentation to complete the
necessary change. This activity includes time spent inspecting and certifying new and
modified code.

Unit test/system test: Enter the number of hours during the current week spent test-
ing and integrating the changed or added components and testing them in the context of
the end-to-end system. This activity includes designing and executing tests and writing
test drivers and program stubs. In the maintenance life cycle, this activity covers testin g
at both the programmer and integration levels.

Acceptance/benchmark test: Enter the number of hours during the current week
spent acceptance testing or benchmark testing. This activity involves verifying that the
software meets requirements and performs correctly with existing operational soft-
ware. In the maintenance life cycle, this activity covers testing at the acceptance level.

Other: Enter the number of hours during the current week spent on any miscellaneous
activities involving maintenance not categorized in any of the above activities. This
includes management, meetings, training, configuration management, and system
build activities. Note that updating documentation falls under the Implementation
activity.

Helpful Hint

Aswith the PRF in development, there is a tendency on Section C of the WMEF to
record activities by “phases,” rather than truly reflecting the type of work being

4-6
6201 Q B Q/

performed. For example, if a change has been promoted to the acceptance test
level, it is common to see all hours associated with it reported under the
Acceptance/Benchmark Test activity in Section C. If some hours were actually
spent correcting errors reported during acceptance test on trouble reports, howev-
er, those hours should be recorded under the approprate categories (1.e., Isola-
tion, Change Design, etc.) based on the actual activities performed. The
Acceptance/Benchmark Test activity should be reserved for actually executing and
evaluating tests.

4.2.1.2 GROWTH DATA

The second type of rate data collected during maintenance is growth data. The SEL
collects these data automatically by monitoring the configured source code library or
libraries. In development, libraries are monitored weekly to provide a profile of source
code growth through the life-cycle phases. In maintenance, however, libraries are mon-
itored monthly, since changes are not expected to occur as rapidly in maintenance as
they do in development. In addition, the measures taken in maintenance represent a
profile of maintenance activity more than they do a profile of system growth, since
growth in maintenance is generally a slower, long-term phenomenon characterized by
short-term increases and decreases.

Since the OSMP calls for multiple levels of libraries to be used in maintaining an opera-
tional system, it should be clarified that the operational libraries are those that the SEL
monitors. The maintenance project leader must communicate the names and locations
of these libraries to SEL data collection personnel. The libraries the SEL is monitoring
at any given time are listed on the data collection status report (see Section 3.2.1.3),
which is distributed monthly to project leaders for validation and update.

The SEL uses the SPF to record monthly growth data. This is the same form used in
development, only the computer resources and services effort portions are not used,
and it is completed monthly rather than weekly. (SEL personnel run growth history
tools for maintenance projects on the last Friday of each calendar month.) Referto Sec-
tion 3.2.1.3 for a complete description of the SPF and a discussion of the growth data
collected on it. The “Helpful Hint” included in that section contains library manage-
ment guidelines that are applicable to both maintenance and development.

4.2.2 Maintenance Event Data

As in development, event data in maintenance are submitted to the SEL sporadically,
when given events in the maintenance life cycle occur, as opposed to being submitted on
a regular, periodic basis. Two types of event data are collected in maintenance: mainte-
nance changes/errors and messages. Changes data are collected on MCRFs and char-
acterize the OSMRs that are implemented in the operational system. Messages data
may be submitted at any time to capture auxiliary information about the maintenance
effort or the data being collected on it. The MCRF and maintenance messages data are
discussed in the following sections.

6201

4.2.2.1 MAINTENANCE CHANGE REPORT FORM (MCRF)
General Information

For every OSMR implemented by the maintenance team, the SEL receives a corre-
sponding MCRF (Figure 4-2), which provides data that characterize the change. A
copy of the OSMR should be attached to the MCRF when it is submitted.

The MCRF is completed by the maintainer responsible for implementing and testing
the OSMR. It should be submitted after the change has been tested at the integration
level and promoted to the acceptance test library for acceptance/benchmark testing.
Although the implementing maintainer may not be responsible for integration testing,
he/she should be aware of the progress of the change so that the form may be submitted
when the change is promoted for acceptance level testing.

Line-by-line Instructions

Name: Enter the SEL database name of the maintainer completing the form. Usually,

the database name consists of a first initial followed by a last name. Questions about
database names should be referred to the SEL DBA.

OSMR number: Enter the tracking number of the OSMR that authorized the change
being characterized on the MCRE

Project: Enter the acronym selected at maintenance startup that uniquely identifies
the project being monitored. Check with the project leader if unsure of the correct
name.

Date: Enter the date on which the form is completed.

Section A

Functional description of change: Explain what change is being made, why the
change is necessary, and how the change is being made. Provide sufficient detail so that
people other than project staff can understand the change. The description should not
be on the variable name level, but should be sufficiently abstract so that the function of
the changed code can be determined.

What was the type of modification? Check the one option that best classifies the
OSMR according to the following definitions:

® Correction: A change made to correct an error in the system; usually arises
from a system failure reported on some type of trouble report or failure
report form; may originate in requirements, specifications, design, code, or
documentation.

® Enhancement: A change made to improve the functionality or performance
of the system; usually originates from a change in requirements or specifica-
tions, but not a requirements or specifications change that simply corrects an
€ITOor.

6201

MAINTENANCE CHANGE REPORT FORM e o
Name: OSMR Number: Care:
Entered by:
Project: Date: Checked by:

SECTION A: Change Request Information

Functional Description of Change:

What was the type of modification? What caused the change?
Correction —— Requirements/specitications
——— Enhancement —— Software design
—— Adaptation Code

—— Previous change
—— Other

SECTION B: Change Implementation Information

Components Added/Changed/Deleted:

1hrto 1dayto 1weekto

<1hr 1 day 1week 1month > 1month

Estimate etfort spent isolating/determining the change:

Estimate effort to design, impiement, and test the change:

(module to external communication)
— Data (value or structure)

(e.g., variable or value changed)
—— Computational

(e.g., change of math expression)
—— QOther (none of the above apply)

Check all changed objects: If code changed, characterize the change (check most
applicable):

—— Requirements/Specitications Document —— |nitialization

—— Design Document —— Logic/controt structure

—— Code (e.g., changed flow of control)

——— System Description —— |ntertace (internal)

— User's Guide (module-to-moduie communication)

— Other —— Interface (extemnai)

Estimate the number of lines of code (including comments):

added changed deleted
Enter the number of components:

added changed deleted
Enter the number of the added components that are:

totally new totally reused reused with
modifications

6210G(39)11

NOVEMBER 1991

Figure 4-2. Maintenance Change Report Form

6201

Adaptation: A change made to adapt the system to a change in the environ-
ment; may originate as a requirements change (e.g., a requirement is added
that the system must execute on hardware platform Y as well as on plat-
form X, for which it was originally designed). Such changes include adapting
to a new hardware platform, upgrading to run under a new version of the
compiler or operating system, and supporting new or upgraded hardware
devices.

Cause of change: Check the one option that best indicates where the change origi-
nated, or to what part of the development life cycle represented in the final product the
source of the change can be traced. The options are as follows:

6201

Requirements/specifications: Any change requiring updates to the require-
ments or specifications that is not the direct result of a previous change. Any
of the three types of change may originate in requirements or specifications:
corrections may derive from correcting errors in the requirements; enhance-
ments may derive from additional requirements to add new functionality or
requirements changes to improve performance; and adaptations may derive
from new requirements to run on different hardware or support different
devices. :

Software design: Any change requiring updates to the software design that
does not originate in requirements or specifications and is not the result of a
previous change; includes changes to calling sequences, PDL, structure
charts, etc. Any of the three types of change may originate in design: correc-
tions may be made to fix design errors; enhancements to improve perform-
ance (not specifically called out in a requirements or specifications change)
may involve modifications to the design; adaptations to a new version of the
compiler or operating system (usually versions of system software and tools
are not specified in requirements or specifications) may also involve modifi-
cations to the design.

Code: Any change requiring updates to the code that does not originate in
requirements, specifications, or design, and is not the result of a previous
change. Any of the three types of change may originate in code: corrections
may be made to fix coding errors that result from the incorrect implementa-
tion of a correct design; enhancements to improve performance may be made
that involve the way in which a given design is implemented; and adaptations
to changes in the environment may be made that involve only changes at the
code level and leave the design intact.

Previous change: Any change that is the direct result of implementing a pre-
vious OSMR (changes made during development are not considered when
determining if a change falls into this category). Any of the three types of
changes may be the result of a previous change. Changes in this category may
involve changes to requirements, specifications, design, and code, but if their

4-10

cause can be traced directly to a previous OSMR, they should be classified in
this category.

® (Other: Any change that does not result from a previous change and does not
affect requirements, specifications, design, or code. Changes to improve the
clarity of stand-alone or inline documentation would fall into this category.

Section B

Components added/changed/deleted: Supply three lists (attaching a separate
sheet if necessary) that identify new components that were added to the system (includ-
ing any that were totally reused from another source), existing components that were
modified, and existing components that were deleted from the system in implementing
the OSMR.

Estimate the effort spent isolating/determining the change: Putacheck markin
the box that indicates the approximate effort spent understanding the change (or find-
ing the cause of the error), locating where the change is to be made, and determining
that all effects of the change are accounted for. Note that this effort is to be reported in
staff-days, not calendar days. Note also that this does not include effort spent making
modifications to requirements or specifications, but begins with the effort spent by the
maintainer understanding the system modifications necessitated by such changes.

Estimate the effort to design, implement, and test the change: Put a check mark
in the box that indicates the approximate effort spent implementing the change. This
includes all effort spent by the maintainer modifying design, code, and documentation,
and testing the change at the local level. It also includes as much of the effort spent at
higher levels of testing as is possible to obtain. There are two factors that determine the
testing level at which effort should no longer be included. One is the level at which the
change is delivered to an organization from which the SEL does not collect data. The
other is the level at which multiple changes are being integrated and tested simulta-
neously, such as may happen when several OSMRs are combined to constitute a new
release of the software. In this case, effort associated with testing a particular OSMR
cannot be reasonably distinguished from that associated with other OSMRs in the re-
lease.

Check all changed objects: Put a check mark by all of the objects listed that were
modified as a result of implementing the OSMR. The items listed are standard
development products and require no clarification. The Other item should be checked
if any other documents, software, or procedures directly related to the system were
changed. This includes, among other things, JCL, build procedures, interface control
documents (ICDs), development tools, and test procedures.

4-11

6201

If code changed, characterize the change: Put a check mark by the one classifica-
tion that best describes the majority of the code changes made. The options are as fol-

lows:

6201

Initialization: The largest proportion of the code changes involved adding or
changing code that initializes data structures at the beginning of a run or upon
entry to a subroutine or procedure. This includes modifying DATA state-
ments and BLOCK DATA subprograms.

Logic/control structure (e.g., changed flow of control): The largest proportion
of the code changes involved modifying Boolean decision points that control
program flow. This includes correcting or changing condition expressions on
IF and CASE statements and changing loop entry or exit criteria.

Interface (intemal) (module-to-module communication): The largest pro-
portion of the code changes involved modifying the way data move through
the system internally. This includes changes in calling sequences (parameter
and argument lists), the specification and use of COMMON blocks, and the
use of state data.

Interface (external) (module to external communication): The largest pro-
portion of the code changes involved modifying the way the system communi-
cates with the external world. This includes, among other things, changes to
the format or access method used with external files, the contents or format
of reports, the data presented on display screens, and the mechanism by
which the user supplies input to the system.

Data (value or structure) (e.g., variable or value changed): The largest pro-
portion of the code changes involved modifying the specification of and ac-
cess to data structures. This includes, among other things, changes to
variables, variable names, array indexes, dynamic data structures, and the
use of pointers.

Computational (e.g., change of math expression): The largest proportion of
the code changes involved adding or modifying code that computes mathe-
matical expressions to evaluate or assign the value of a variable.

Other (none of the above apply): Since virtually all code changes fall into one
of the preceding categories (even deletions involve removing code that falls
into the categories listed), this option should be checked only if the propor-
tions of code changes falling into two or more of the categories are close
enough that a single category with the largest proportion is not discernible.

4-12

Estimate the number of lines of code (including comments):
NOTE: The lines of code counted for the following three fields are SLOC, which is

defined as a count of carriage returns, card images, or file records. In count-
ing SLOC, each line of the system stored in a source code file is counted only
one time. Thus, for example, the addition of an INCLUDE statement to a
component would be counted as one additional source line of code, rather
than counting the size of the file being included. (See also the discussion of
line counting in hint 3 of PCSF instructions—Section 3.3.1).

Added: Enter the number of newly created lines of code added to the system.
This includes all lines in new components that are added to the system, new
segments of code that are added to existing system components, and net
increases in segments of code that are modified in existing components.

Changed: Enter the number of existing lines of code that were modified.

Deleted: Enter the number of lines of code deleted from the system. This
includes all lines in components that are deleted from the system, entire seg-
ments of code that are deleted from existing system components, and net de-
creases in segments of code that are modified in existing components.

Enter the number of components:

NQTE: The component counts entered in the following three fields must match the

number of components in the lists provided in the Components Added/
Changed/Deleted field.

Added: Enterthe number of components that were added to the system. This
is not limited to newly developed components, since components may have
been added by reusing them from other sources. Itisalso nota netincreasein
components from before the change to after it.

Changed: Enter the number of existing system components in which source
code was added, modified, or deleted.

Deleted: Enter the number of components that were deleted from the system.
This may include components that were linked into the system from another
source but are no longer linked in as a result of the change (see hint 4). Itis
not a net decrease in components from before the change to after it.

Enter the number of added components that are:

NOTE: The sum of the component counts entered in the following three fields must

6201

equal the total number of components added to the system as recorded in the
preceding set of fields.

Totally new: Enter the number of added components that were designed and
implemented from scratch.

.

4-13

6201

Totally reused: Enter the number of added components that were reused
without modification from other sources. This includes all totally reused
components that are copied into the project’s operational library, as well as
certain classes of reused components that are linked in from external reuse
libraries (see hint 4).

Reused with modifications: Enter the number of added components that were
reused from other sources but were modified during the implementation of
the change.

Helpful Hints

Estimating the effort spent implementing a change can be imprecise,
especially if there are several levels of testing covered by the estimate. The
maintainer may not have information about how much time is spent on a
particular change by testers at the integration level or at higher testing levels.
One suggestion is to have a key point of contact responsible for coordinating
a given level of testing. This individual would be in the best position to esti-
mate the amount of effort spent testing a given change at that particular level.
The responsible maintainer should consult these key points of contact for
each of the testing levels included and combine the estimates when filling out
this part of the form.

Characterizing the predominant type of code changes made is really more of
a judgment call by the maintainer than a precise measurement. However, the
maintainer is strongly urged to think through the types of modifications per-
formed (including thinking about what type of code was deleted) and select
a predominant type of change when completing this part of the form, rather
than resorting to the Other category to indicate that no single type of change
was predominant. ‘

Questions often arise about how to determine the number of lines added,
changed, and deleted. If, for example, a maintainer is modifying a five-line
segment of code and finds it easier to delete the five lines and retype them
with the modifications, are those counted as five lines deleted and five added,
or simply as five lines changed? The answer is not clear-cut. If the change
involved simply changing a variable name in each of the five lines, those five
lines would definitely be considered changed lines. If, however, the five lines
deleted are replaced by five entirely different lines that implement the same
function via an entirely different algorithm, they should be counted as five
lines deleted and five lines added. Perhaps the best advice for supplying these
counts for modified components (it is obvious for added and deleted compo-
nents) is to use a comparison tool to produce difference listings between the
old versions of the changed components and the new versions. Such tools are
available in the FDF mainframe environment, the STL VAX environment,
and on PCs, and many will produce summary counts of added, changed, and

4-14

deleted lines. It is recommended that such a tool be selected and used consis-
tently for computing these line counts.

4. Another point of clarification concerns defining the “boundaries” of the sys-
tem with respect to reused software linked in from other sources for the pur-
pose of counting added, changed, and deleted lines and components. As
discussed in hint 4 of the PEF instructions (Section 3.1.2), software that is
linked in from institutionally maintained tools (such as a graphics display tool
or vendor-supplied, language-specific library of mathematics routines), is
not considered within the system boundaries for purposes of measuring the
effects of a change. If, however, the reused software i1s linked in from a sepa-
rately maintained application or a generic library of application-specific soft-
ware (e.g., RSL, MTASS, or MSASS), then it is considered inside the system
boundaries for purposes of measuring the effects of a change.

4.2.2.2 PROJECT MESSAGES

The second type of event data collected during maintenance is project messages. These
are submitted whenever a maintainer or SEL data collector wants to provide additional
information to annotate the data being collected. Messages are submitted on a PMF,
described in Section 3.2.2.5.

Typical message information that should be submitted during maintenance includes the
testing level through which effort data are collected, the testing level through which the
effort spent on a given OSMR is being tracked, the organizational responsibilities for
maintenance of the system, periods during which data collected should be considered
incomplete for one reason or another, any deviations from the OSMP being adopted by
the project that would be important to users of the data, and any additional information
that describes the nature of the data, their accuracy, or how they should be interpreted.

Although there is no formal closeout process defined for the end of maintenance data
monitoring, SEL data collection personnel meet with the maintenance project leader
to discuss the data collected and identify any final areas where clarification or annota-
tion is necessary. The results of this final, informal meeting are documented in the
database via a PMF completed by a SEL data collector.

6201

APPENDIX—SEL FORMS

The SEL forms appear on the following pages.

6201

Name:
Project:

CHANGE REPORT FORM

Approved by:
Date:

Section A - identification

Describe the change: (What, why, how)

Effect: What components are changed?

Effort: What additional components

Pretx Name Version were examined in determining
what change was needed?
-
|
|
(Attach list if more space is needed)
Location of deveioper's sourcs files
month day year

Need for change determined on:

Check here i change invoives E]
Ada companents (I so, compiete

Change compileted (Incorporated into system):

questions on reverse side)

Effortin person time to isolate the change (or efror):

Effort in person time to implement the change (or correction):

1hrless 1hriday 1/3days >3days

Section B — All Changes

Type of Change (Check one)
{7 Error comection DOp&nindmolmspncl
(] Ptanned enhancement
[impiementation of requirements Dmnm

change change
Dlmpcuvunm(ofdlﬂw [[] Other (Descxibe beiow)
wblity, or

Ghnmvmmtoluurm
O tnsertiorvdeietion of debug code

Y N Effects of Change
[0 [Was the change or correction 1o cne and only one
component? (Must match Effect in Section A)

O O 0td you iook at any other component? (Must
match Effort in Section A)

[0 O tid you have 1o be sware of parameters passed
axpiicitly or impiicitty (e.g., COMMON biocks) o or

from the changed components?
Section C — For EfTor Corrections Cnly
Source of Error Class of Error Characteristics
(Check one) (Check most applicable)* {Check Y or N for all)
a Requirements a lnm Y N
(] Functonal specifications | [(L:':M‘”':,“'m“wm correct OO omission eor (eg, something was et out
[Design [interface (internal) ;
DCode (moduis-lo-module communication) D D m@mm(&ngwm
D Intertace (externai)
O Previous change Dm:"“‘“”‘“:""‘m’ OO Error was crested by transcription (clerical)
| (:-.g.. mmm For Ubrarian's Use Only
(@.g., orror in math expression) Number:
Date:
“f two are squaly sppiicable, check the
Entered by:
one higher on the list. Checked by
NOVEMBER 1991
A-2

6201

6201G(13) 09

CHANGE REPORT FORM
Ada Project Additional Information

1. Check which Ada feature(s) was invoived in this change (Check all that apply)

] Datatyping O Program structure and packaging
(0 Subprograms [0 Tasking

[0 Exceptions [0 System-dependent features

O Generics [0 Other, please specity

(e.g., VO, Ada statements)
2. Foran efror invoiving Ada components:
a. Does the compiler documentation or the language
reference manual explain the feature clearty?

(Y/N)

b. Which of the following is most true? (Check one)
[Understood features separately but not interaction
0 Understood features, but did not apply correctly
[Did not understand features fuily
O Contused feature with feature in another language

¢. Which of the following resources provided the information
needed to correct the error? (Check all that apply)
O Classnotes O Ownmemory
[J Ada reference manual O Someone noton team
[J Own project team member O Other

d. Which toots, if any, aided in the detection or correction of this error? (Check all that apply)
O Compiler O Source Code Analyzer
[0 Symboiic debugger [0 P&CA (Petformance and Coverage Analyzer)
O Language-sensitive editor [0J DEC test manager
O cwms] Other, specify

3. Provide any other information about the interaction of Ada and this change
that you feed might aid in evaluating the change and using Ada

NQVEMBER 1931

6201

6201G(13)-13

COMPONENT CHANGE FORM

Name:

Praject:

Date:

This form is to be used when components in the project controlled source library are deleted or

renamed.

Action
Old Component
L R - Rename New Component
(Must exist in the database) D — Delete
Prefix Name Prefix Name
NOVEMBER 1991
A-4

6201

6201G(13) 37

COMPONENT ORIGINATION FORM

Identification

Name:
Project: Date:

Subsystem Prefix:

Component Name:

Configuration Management Information
Date entered into controlled library (supplied by configuration manager):
Library or directory containing deveioper's source file:

Member name:

Relative Difficulty of Developing Component
Please indicate your judgment by circling one of the numbers below.

Easy Medium Hard
1 2 3 4 5
Origin

If the component was modified or derived from a different project, please indicate the
approximate amount of change and from where it was acquired; if it was coded new (from
detailed design) indicate NEW., -

NEW For Librarian's Use Only
Extensively modified (more than 25% of Number:
statements changed) Date:
Slightly modified Entered by:
Old (unchanged) Checked by:

If not new, what project or library is it from?

Component or member name:

Type of Component (Check one only)
INCLUDE file (e.g., COMMON) BLOCK DATA file
Control language (e.g., JCL, DCL, CLIST) Ada subprogram specification
ALC (assembler code) Ada subprogram body
FORTRAN source Ada package specification
Pascal source Ada package body
C source Ada task body
NAMELIST or parameter list Ada generic instantiation
Display identification (e.g., GESS, FDAF) Ada generic specification
Menu definition or help Ada generic body
Referenca data files Other

Purpose of Executable Component

For executable code, please identify the major purpose or purposes of this component.
Check all that appiy).

—

I/O processing Control module
Algorithmic/computationat Interface to operating system
Data transfer Process abstraction
Logic/decision Data abstraction

NOVEMBER 1991

R

01

6201G(13)-38

DEVELOPMENT STATUS FORM

Name:

Project: Cate:

Please complate the section(s) that is appropriate for the current status of the project.

Design Status

Planned total number of components to be designed
(New, moditied, and reused)

Number of components designed
(Prelog and PDL have been compisteq)

Code Status

Planned total number of components to be coded
(New, modified, and reused)

Number of components compieted ‘
.(Acded to controlled tibrary)

N {
Testing Status . System Test P Acceptance Test

Total number of separate tests plannea :

Number of tests executed at least one ime |

Numoer of tests passed ! i

Discrepancy Tracking Status (from beginning of system testing)

Totat numper of giscrepancias reponed :

Total number of discrepancies resolved i

Specitication Madification Status (from beginning of requirements analysis)

Total numper of specttication modifications raceived |

Total numper of specttication modifications compieted (imolementea)

Requirements Questions Status (from beginning of requirements analysis)

Total numoer of questions submrtted to analysts

Totat numper ot questions answered by analysts

Check here if there For Librarian's Use Only
dre no changes
—_ Number:
| Date:
L—— Entered by:
Checked by:

NOVEMBER 1991

6201

620163(39) 8

MAINTENANCE CHANGE REPORT FORM o Loranans Use Ony

Number:
Name: OSMR'Number: Date:
) Entered by:
Project: Date: Checked by:

—————————
eresse—

SECTION A: Change Request Information

Functional Description of Change:

What was the type of modification? What caused the change?
Correction —— Requirements/specifications
—— Enhancement —— Software design
— Adaptation Code

—— Previous change
—— Other

SECTION B: Change Implementation Information

Components Added/Changed/Deleted:

thrto 1dayto 1 weekto
< 1hr 1 day 1week 1month . 1month

Estimate effort spent isolating/determining the change:
Estimate effort to design, implement, and test the change:

Check all changed objects: It code changed, characterize the change (check most
applicabie):

—— Requirements/Specifications Document —— Initialization

—— Design Document —— Logic/controf structure

—._ Code (e.g., changed flow of control)

—— System Description —— Interface (internal)

—__ User's Guide (module-to-moduie communication)

— Other —— Interface (external)

(module to external communication)
— Data (vatue or structure)

(e.g., variable or value changed)
—— Computational

(e.g., change of math expression)
—— Other (none of the above apply)

Estimate the number of lines of code (inciuding comments):

added changed deleted
Enter the number of components:

added changed deleted
Enter the number of the added components that are:

totally new totally reused reused with
modifications

NOVEMBER 1991

6201

6210G(39)-11

Personnel Resources Form

Name:

Project: Date (Friday):

SECTION A: Total Hours Spent on Project for the Week:

SECTION B: Hours By Activity (Total of hours in Section B should equal total hours in Section A)

Activity Activity Definitions

Hours

Predesign Understanding the concepts of the system. Any work prior to the actual design (such
as requirements analysis).

Create Design Development of the system, subsystem, or components design. Includes development
of PDL, design diagrams, etc.

Read/Review Design | Hours spent reading or reviewing design. Includes design meetings, formal and informal
reviews, or watkthroughs.

Write Code Actually coding system components. Includes both desk and terminal code development.

Read/Review Code Code reading for any purposa other than isolation of errors.

training hours, notebooks, system descriptions, user's quides, etc.

Test Code Units Testing individual components of the system. Inciudes writing test drivers.

Debugging Hours spent finding a knawn error in'the system and developing a soittion. inciudes gen-
eration and execution of tests associated with finding the error.

Integration Test Writing and executing tests that integrate system components, including system tests.

Accentance Test Running/supporting acceptance testing.

Other Cther hours spent on the project nat covered above. Inciudes management, meetings,

SECTION C: Effort On Specific Activities (Need not add to A)
(Some hours may be counted in more than one area: view each activity separately)

Rework: Estimate of total hours spent that wera caused by unplanned changes or errors. Includes
effort caused by unplanned changes to specifications, emmaneous or changed design, errors or
unplanned changes to code, changes to documents. (This includes all hours spent debugging.)

Enhancing/Refining/Optimizing: Estimate of total hours spent improving the efficiency or clarity of design, or
code, or documentation. These are not caused by required changes or errors in the system,

Documenting : Hours spent on any documentation of the system. Inciudes development of design documents,
profogs, in-fine commenmary, test plans, system descriptions, user's guides, or any other system
documentation.

Reuse: Hours spent in an effort to reuse components of the system. Inciudes sffort in looking at other
system(s) design, code, or documentation. Count total hours in searching, applying, and testing.

L]

]
L]

L]

For Librarian's Use Onty

Number:

Entered by:

Checked by:

NOVEMBER 1991

6201

5150G(21)-38

Name:

Personnel Resources Form
(CLEANROOM VERSION)

Project:

Date (Frday):

SECTION A: Total Hours Spent on Proiect for the Week:

SECTION B: Hours By Activity (Total of hours in Section B should equal total hours in Section A)

Activity

Activity Definitions

Hours

Predesign

Understanding the concepts of tha system. Any work prior to the actual design (such
as requirements analysis).

Pretest

Developing a test plan and building the test envionment. Includes generating test casas,
generating JCL, compiling components, buiiding libraries, and cefining nputs and
probabilities.

Create Design

Development of the system, subsystem, or components design. nciudes box structure
decomposition, stepwise refinement, develooment of POL, design diagrams, etc.

Varfu/Qeview Design ! Includes design meetings. formal and informal reviews, and walkthrouans.

Write Code Actually coding system components. Includes both desk and terminal code development.

Read/Review Code Code reading for any purpase other than isoiation of errors. Inciudes ventying and
reviewing code for correctness.

Independent Test Executing and evaluating tests of system comoonents.

Response to SFR

Isolating a tester-reported probiem and develooing a solution. Inciudes writing and
reviewing design or code to isolate and correct a tester-reported oroblem.

Acceptanca Test

Running/supporting acceptancs testing.

QOther

Other hours spent on the project not coverea above. Includes management, meetings,
training hours, notebooks, system descriptions, user's guides, ec.

SECTION C: Effort On Specific Activities

Methodology Understanding/Discussion: Estimate the total hours spem learning, aiscussing, reviewing or
attempting to understand cleanroom-related methods and techniques. includes all tima spent in training.

]

For Libranan's Use Only

Numoer:

Date:

Entared oy:

Chaecked by:

NOVEMBER 1991

6201

6201G(13)-24

PROJECT COMPLETION STATISTICS FORM

Name:

Project:

Date:

Phase Dates (Saturdays)

Slaff Resource Statistics

Phase

Stant Date Technical and

Requirements Definition

Managemant Hours

Design

Services Hours

Implementation

System Test

Computer Resource Statistics

Accaptance Test Computer l CPU hcurs No. of runs
leanup
Maintenance
Project End i
Project Size Statistics
General Parameters Sourcs Lnes of Code

Number of subsystems Total
Numbper of components New
Number of changes Siightly Modified
Pages of documentanon Extensively Modified

Old

Comments

Executable Modules Executable Statements Statements

Total Total Tetal
New New New
Slightly Mcaified Slightly Modified Siightly Mcaified

Extensively Modified Extensively Modified Extensively Modified
Old Oid Oid
Note: Al of the values on this form are 1o be actual values at For Libranan's Use Only

the compietion of the project. The vaiues enterea by
hand by SEL personnel reflect the cata collected by
the SEL during the course of the project. Update
these according to project recoras and supply values
for all blank fielcs.

Numnber:

Date:

Entered by:

Chacxraa ty:

6201G(39) 11

NOVEMSER 1991

6201

A-10

PROJECT ESTIMATES FORM

Name:
Project: Date:
Phase Dates (Saturdays) Staff Resource Estimates
Phase Start Date Programmer Hours
Requirements Definition Management Hours
Design Services Hours
implementation
Systemn Test
Acceptance Test
Cleanup
Project End
Project Size Estimates
Number of subsystems
Number of components
Source Lines of Code
Total
New
Modified
O
Note: All of the values on this form are to be For Librarian's Use Only
estimates of projected values at compietion Numbar:
of the project. This form shouid be o
submitted with updated estimates every 6 to Dta:
8 weeks during the course of the project. Entared by:
Checked by:

NOVEMBER 1991

A-11
6201

6201G(13)-16

Name:

PROJECT MESSAGES FORM

Project:

Date:

Messages:

NOVEMBER 1991

6201

A-12

6201G(13) 35

PROJECT STARTUP FORM

Name:
Project: Date:

PLEASE PROVIDE ALL AVAILABLE INFORMATION

Project Fuil Name:

Project Type:

Contacts:

Language:

Computer System:

Account:

Task Numcer:

Forms To Be Collected: (Circle forms that apply)
PEF PRF CLPRF DSF SPF SIF COF CCF CRF SEF PCSF WMEF MCRF

General Nces:

Personnel Names (indicate with * if not in database):

NOVEMBER 19391

A-13
6201

6201G(13)-36

SERVICES/PRODUCTS FORM

Project:
Date (Friday):

COMPUTER RESOURCES

Computer

CPU Hours

No. of Runs

GROWTH HISTORY

Components

Changes

Lines of Code

SERVICES EFFORT

For Librarian's Uss Oniy

Service Hours

Tech Pubs

Secretary

Proj Mgmt

Other Numbar:
Date:
Entered by:
Checked by:

6201G(13)-08

NOVEMBER 1991

6201

A-14

SUBJECTIVE EVALUATION FORM

Name:

Project: Date:

Indicate respanse by circting the correspanding numerc ranking.

. PROBLEM CHARACTERISTICS
1. Assess the intrinsic difficuity or comoiexity of the probtem that was addressad by the software gevelopment.

1 2 3 4 S
Easy Average Difficult

2. How tight were scheduia constraints an project?
1 2 3 4 S
Loose Average Tight

3. How stable were requirements over ceveigpment perioa?

1 2 3 4 S
Loose Average High

4. Assess the overall quaiity of the requiremants specification documents, including their clanty, accuracy,
consistency, and compieteness. ‘

1 2 3 4 S
Low Average High

5. How extensive were documentation requirements ?

1 2 3 4 5
Low Average High

.
8. How rigorous were formal review recuirements?

1 2 3 4 S
Low Average High

. PERSONNEL CHARACTERISTICS: TECHNICAL STAFF

7. Assess overall quality and ability of cevelopment team.

1 2 3 4 H
Low Average High
8. How wouid you characterize the develiooment team's exoerience and familiarity with the appiication area of
the project?
1 2 3 4 5
Low Average High

9. Assass the davelopment team's exoenence and familianty with the deveiopmant environment (haraware
and support sottware).
1 2 3 4 5
Low Average High

10. How stable was the composition of tha development team over the duration of the project?

1 2 3 4 5
Loose Average High

FOR LIBRARIAN'S USE ONLY

Number: Entered by:

Date: Checked by:

NOVEMBER 1991

A-15

6201

6201G(13) 29

6201

SUBJECTIVE EVALUATION FORM

PERSONNEL CHARACTERISTICS: TECHNICAL MANAGEMENT

11.

12,

13.

14,

18.

22,

Assess the overall performance of project managsmaent.
1 2 3 4 5
Low Average High

Assass project managemsnt's experiance and familiarity with the appicauon.

1 2 3 4 S
Low Average High
How stable was project managemant during the project?
1 2 3 4)
Low Average High
What degree of disciplined project planning was used?
1 2 3 4 5
Low Average High

Tc what degree were project plans foliowed?
1 2 3 4 5
Low Average High

. PROCESS CHARACTERISTICS
186.

To what extent did the development team use modern programming practices (POL., top-down
Gevelopment, structured programming, and code reading)?
1 2 3 4 5
Low Average Hign

. To what sxtent did the deveiopmant team use well-defined or disciplined orocedures to record

spacificaton moatfications, requirements questions and answers. and intarface agreemsnts?
1 2 3 4 5

Low Average Hign
. To what extent aid the devselopment team use a well-defined or cisciphned requirements analysis
methodoiogy ?
1 2 3 4 3
Low Average High
. To what extent did the development team use a well-definad or disciplined daesign methodology?
1 2 3 4 5
Low Average High
. To what extent did the davelopment team use a weli-defined or disciplined testing methodology?
1 2 3 4 5
Low Average High

. PROCESS CHARACTERISTICS
21,

What software tools were used by the davelopmant team? Check ail that apply rom the tist that tollows
and identity any other tools that were useda but are not listed.

[Compiier OcaT
O tinker {J panvaLET
O editor O Test coverage toot

(O Intertacs cnecker (RXVP80, etc.)
[Language-sansitive eaitor

[J Grapnic disolay buiidar
{0 Requiremaents language orocessar

(3 structured analysis support tool (J Symbolic cebugger
(0 POL processor (J Contiguranon Management Toot (CMS, etc.)
7 isPF 7] Others (idenuty by name and function)
O sapP
Ta what extent did the development team prepare and foliow test plans?
1 2 3 4 5
Low Average High

A-16

6201G(13)-30

8201

SUBJECTIVE EVALUATION FORM

IV. PROCESS CHARACTERISTICS (CONTD)

23. To what extent did the development team use wali-defined and disciplined quality assurance procedures
(raviews, inspactions, and walkthroughs)?

! 2 3 4 S
Low Average Hign
24. To what extant cid daveiopment team use waell-defined or cisciplinad contiguration management
praceduras?
1 2 3 4 S
Low Average High

V. ENVIRONMENT CHARACTERISTICS

25. How wouid you characterize the development taam's degree of access 1o the deveiopment system?
1 2 3 4 S

Low Average High
26. What was the ratio of programmers to terminals?
1 2 3 4 5
8:1 4:1 2:1 11 1:2

27. To what degres was the develnpment team constrained by the size of main memory or direct-access
storage avaiiable cn the daveiopment system?
1 2 3 4 5
Low Average High

28. Assassthe system rasponse time: were the turnaround times experienced by the team saltisfactory in
light of the size and nature of the jobs?

1 2 3 4 S
Poor Average Very Good
29. How stable was the hargware and system support scftwara (inciuding language processors) during the
project?
1 2 3 . 4 S
Low Average High

30. Assess thae effectivenass of the software toois.

1 2 3 4 5
Low Average High
Vl. PRODUCT CHARACTERISTICS
31. To what degrea coss the delivared softwara provide the capabilities specified in the requirements?
1 2 3 4 5
Low Average High
32. Assess the quaiity of the delivered software product.
1 2 3 4 5
Low Average High
33. Assass the quality of the design that is present in the software product.
1 2 3 4 5
Low Average High
34. Assess the quality and compieteness of the delivered system documentation,
1 2 3 4
Low Average High
35. To what degree were software products delivered on tima?
1 2 3 4 5
Low Average High

36. Assass smoothnass 2or relative easse of accaptance testing.
1 4

Low Average High

A-17

6201G(13)-31

SUBSYSTEM INFORMATION FORM

Name:
Project: Date:
Add New Subsystems
Subsystem Subsystem Subsystem
Prefix Name Function

Change Existing Subsystems

Action
QOld Subsystam Prefix (R - Rename, New Subsystem Prefix
(Must exist in the database) D - Delete) (Must not exist in the database)

This form is to be completed by the time of the Preliminary Design Review (POR). An update
must be submitted each time a new subsystem is defined thereaiter. This form is also to be
used when a subsystem is renamed or deleted.

Subsystem Prefix: A prefix of 2 to 5 characters used to identify the subsystem when naming
components
Subsystem Name: A descriptive name of up to 40 characters
Subsystem Function: Enter the most appropriate function code from the list of functions below:
USERINT: User Intertacs
- - DPDC: Data Processing/Data Conversion
Far Libra Use Oni
i ! REALTIME: Real-time Control
Number: MATHCOMP: Mathematical/Computational
Date: GRAPH: Graphics and Special Devica Support
Entered by: CPEXEC: Control Procassing/Executive
Checked by: SYSSERV: System Services
NOVEMBER 1991
A-18

6201

6201G(13)-39

WEEKLY MAINTENANCE EFFORT FORM Num?“ e e oy
Name: Date:
Project: Date(Friday): ______ Entarea by:
Checxed by:

Section A — Total Hours Spent on Maintenance (incudes time spent on ail maintenance

activitias for the project exciuding writing specification modifications)

Section B — Hours By Class of Maintenance (Total of hours in Section 8 should equal total hours in

Section A)
Class: Definition: Hours
Cotrection Hours spent on all maintenance associated with a system failure.
Enhancement Hours spent on all maintenance associated with modilying the system due
to a requirements change. Includes adding, deleting, or modifying system
features as a result of a requirements change.
Adaptation Hours spent on ail maintenance associated with modifying a system to

adapt to a change in hardware, system soitware, or environmental
characteristics.

Other

Other hours spent on the project (related to maintenance) not covered
above. Includes management, meetings, etc.

Section C - Hours)By Maintenance Activity (Totl of hours in Section C should equal totat hours in

Section A
Activity Activity Definitions: Hours

Isofation Hours spent understanding the failure or request for enhancement or
adaptation.

Change Hours spent actuaily redesigning the system based on an understanding

Design of the necessary change.

Implementation Hours spent changing the system to compiete the necessary change.
This inctudes changing not only the code, but the associated
documentation.

Unit Test/ Hours spent testing the changed or added components. Includes hours

System Test spent testing the integration of the components.

Acceptance/ Hours spent acceptance testing or benchmark testing the modified

Benchmark Test system.

Other Other hours spent on the project (related to maintenance) not covered
above. inciudes management, meetings, etc.

NOVEMBER 1991

6201

A-19

6201G(39)-10

GLOSSARY

AGSS

6201

Attitude Ground Support System

assistant technical representative
Component Change Form

Critical Design Review

Cleanroom Personnel Resources Form
configuration management

Code Management System

Component Origination Form

central processing unit

Change Report Form

Database Administrator

Digital Equipment Corporation
Development Status Form

Flight Dynamics Application Framework
Flight Dynamics Division

Flight Dynamics Facility

Graphics Executive Support System
Goddard Space Flight Center

interface control document

Interactive System Productivity Facility

job control language

Maintenance Change Report Form
Multimission Spin-Axis Stabilized Spacecraft
Multimission Three-Axis Stabilized Spacecraft
National Aeronautics and Space Administration
Operational Software Modification

Operational Software Modification Procedures

G-1

OSMR
PC
PCSF
PDL
PDR
PEF
PMF
PR
PRF
PSF
QA
RDBMS
SAP
SDE
SEF
SEL
SFR
SIF
SLOC
SPF
STL
STR
WMEF

6201

Operational Software Modification Report
personal computer

Project Completion Statistics Form
program design language
Preliminary Design Review

Project Estimates Form

Project Messages Form

problem report

Personnel Resources Form

Project Startup Form

quality assurance

Relational Database Management System

FORTRAN Static Source Code Analyzer Program

Software Development Environment
Subjective Evaluation Form
Software Engineering Laboratory
software failure report

Subsystem Information Form

source lines of code
Services/Products Form

Systems Technology Laboratory
software trouble report

Weekly Maintenance Effort Form

REFERENCES

10.

11.

12.

13.

14.

8201

Software Engineering Laboratory, SEL-81-101, Guide to Data Collection.
V. Church et al., August 1982 '

——, SEL-84-101, Manager’s Handbook for Software Development (Revision 1),
L. Landis et al., November 1990

——,SEL-89-101, Software Engineering Laboratory (SEL) Database Organization
and User’s Guide (Revision 1), M. So et al., February 1990

——,SEL-90-001, Database Access Manager for the Software Engineering Labora-
tory (DAMSEL) User’s Guide, M. Buhler et al., March 1990

Goddard Space Flight Center, FDD/552-90/008, Database Access Manager for
the Software Engineering Laboratory (DAMSEL) System Description (Revision 1),
M. So et al., prepared by Computer Sciences Corporation, April 1990

Software Engineering Laboratory, SEL-91-004, Cleanroom Process Model,
S. Green, November 1991

——, SEL-81-205, Recommended Approach to Software Development, F. E.
McGarry et al., April 1983

Goddard Space Flight Center, FDD/552-90/053, Multimission Three-Axis
Stabilized Spacecraft (MTASS) Flight Dynamics Support System (FDSS) Attitude
Determination System (ADS) User’s Guide,R. Coon et al., prepared by Computer
Sciences Corporation, September 1990 .

——, 552-FDD-91/019, Multimission Spin-Axis Stabilized Spacecraft (MSASS)
Flight Dynamics Support System (FDSS) User’s Guide, C. Crognale et al.,
prepared by Computer Sciences Corporation, October 1991 (Draft)

——, 552-FDD-91/048,- Reusable Software Library (RSL) User’s Reference, Revi-
sion 1, M. Woolsey et al., prepared by Computer Sciences Corporation, July 1991

Software Engineering Laboratory, SEL-86-003, Flight Dynamics System Software
Development Environment (FDS/SDE) Tutorial, J. Buell et al., July 1986

Computer Sciences Corporation, CSC/SD-75/6057UD1, Graphic Executive
Support System (GESS) User’s Guide, Update 1, D. Green, September 1989

Goddard Space Flight Center, 552-FDD-89/011UD1, Flight Dynamics Applica-
tion Framework (FDAF) User’s Guide, Revision 1, Update 2, D. Green, prepared
by Computer Sciences Corporation, May 1991

International Business Machines Corporation, Interactive System Productivity
Facilitv (ISPF) and ISPF/Program Development Facility (ISPF/PDF) Version 3
Release 2 General Information, GC34-4250, March 1990

R-1

15.

16.

6201

Software Engineering Laboratory, SEL-78-302, FORTRAN Static Source Code
Analyzer Program (SAP) User’s Guide (Revision 3), W. Decker and W, Taylor,
July 1986

Goddard Space Flight Center, 553-FDD-91/023, Flight Dynamics Facilitv (FDF),
Operational Software Modification Procedures (OSMP) Revision 1, R. Jenkins
et al., prepared by Computer Sciences Corporation, July 1991 (Draft)

R-2

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in this bibliography are or-
ganized into two groups. The first group is composed of documents issued by the Soft-
ware Engineering Laboratory (SEL) during its research and development activities.
The second group includes materials that were published elsewhere but pertain to SEL
activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engineering Workshop,
August 1976

SEL-77-002, Proceedings From the Second Summer Software Engineering Workshop,
September 1977

SEL-77-004, A Demonstration of AXES for NAVPAK, M. Hamilton and
S. Zeldin, September 1977

SEL-77-005, GSFC NAVPAK Design Specifications Languages Study, P. A. Scheffer and
C. E. Velez, October 1977

SEL-78-005, Proceedings From the Third Summer Software Engineering Workshop,
September 1978

SEL-78-006, GSFC Software Engineering Research Requirements Analysis Study,
P A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL Environment, T. E. Mapp,
December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP) User’s Guide
(Revision 3), W. J. Decker, W. A. Taylor, et al., July 1986

SEL-79-002, The Software Engineering Laboratory: Relationship Equations,
K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System Description and
User’s Guide, C. E. Goorevich, A. L. Green, and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Program Design Language
(PDL) in the Goddard Space Flight Center (GSFC) Code 580 Software Design Environ-
ment, C. E. Goorevich, A. L. Green, and W. J. Decker, September 1979

SEL-79-005, Proceedings From the Fourth Summer Software Engineering Workshop,
November 1979

BI-1

10000229
0328/1300

SEL-80-002, Multi-Level Expression Design Language-Requirement Level (MEDL-R)
System Evaluation, W. J. Decker and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support Software System (MMS/
GSSS) State-of-the-Art Computer Systems/Compartibility ~ Study, T Welden,
M. McClellan, and P. Liebertz, May 1980

SEL-80-005, 4 Study of the Musa Reliability Model, A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engineering Workshop,
November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estimation Models for Software
Systems, J. E. Cook and F. E. McGarry, December 1980

SEL-80-008, Tutorial on Models and Metrics for Software Management and E ngineering,
V. R. Basili, 1980

SEL-81-008, Cost and Reliability Estimation Models (CAREM) User’s Guide, J. F. Cook
and E. Edwards, February 1981

SEL-81-009, Software Engineering Laboratory Programmer Workbench Phase 1 Evalua-
tion, W. J. Decker and F. E. McGarry, March 1981

SEL-81-011, Evaluating Software Development by Analysis of Change Data,
D. M. Weiss, November 1981

SEL-81-012, The Rayleigh Curve as a Model for Effort Distribution Over the Life of
Medium Scale Software Systems, G. Q. Picasso, December 1981

SEL-81-013, Proceedings of the Sixth Annual Software Engineering Workshop, December
1981

SEL-81-014, Automated Collection of Software Engineering Data in the Software Engi-
neering Laboratory (SEL), A. L. Green, W. J. Decker, and F. E. McGarry, September
1981

SEL-81-101, Guide to Data Collection, V. E. Church, D. N. Card, F. E. McGarry, et al.,
August 1982

SEL-81-104, The Software Engineering Laboratory, D.N.Card, F E. McGarry,
G. Page, et al., February 1982

SEL-81-107, Software Engineering Laboratory (SEL) Compendium of Tools (Revision 1)s
W.J. Decker, W. A. Taylor, E. J. Smith, et al., February 1982

SEL-81-110, Evaluation of an Independent Verification and Validation (IV&V) Methodol-
ogy for Flight Dynamics, G. Page, F. E. McGarry, and D. N. Card, June 1985

BI-2

10000229
0328/1300

SEL-81-205, Recommended Approach to Software Development, F. E. McGarry,
G. Page, S. Eslinger, et al., April 1983

SEL-82-001, Evaluation of Management Measures of Software Development, G. Page,
D. N. Card, and F. E. McGarry, September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineering Papers: Volume 1, July 1982

SEL-82-007, Proceedings of the Seventh Annual Software Engineering Workshop,
December 1982

SEL-82-008, Evaluating Software Development by Analysis of Changes: The Data From
the Software Engineering Laboratory, V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Program (SAP) System Description
(Revision 1), W. A. Taylor and W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory Terms, T. A. Babst,
M. G. Rohleder, and F. E. McGarry, October 1983

SEL-82-1006, Annotated Bibliography of Software Engineering Laboratory Literature,
L. Morusiewicz and J. Valett, November 1991

SEL-83-001, An Approach to Software Cost Estimation, F. E. McGarry, G. Page,
D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development, D.N. Card,
F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers: Volume II, November 1983

SEL-83-006, Monitoring Software Development Through Dynamic Variables,
C. W. Doerflinger, November 1983

SEL-83-007, Proceedings of the Eighth Annual Software Engineering Workshop,
November 1983 :

SEL-83-106, Monitoring Software Development Through Dynamic Variables (Revi-
sion 1), C. W. Doerflinger, November 1989

SEL-84-003, Investigation of Specification Measures for the Software Engineering Labora-
tory (SEL), W. W. Agresti, V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedings of the Ninth Annual Software Engineering Workshop,
November 1984

SEL-84-101, Manager’s Haﬁdbook for Software Development (Revision 1), L. Landis,
F E. McGarry, S. Waligora, et al., November 1990

SEL-85-001, 4 Comparison of Software Verification Techniques, D.N. Card,
R. W. Selby, Jr., F. E. McGarry, et al., April 1985

BI-3

10000229
0328/1300

SEL-85-002, Ada Training Evaluation and Recommendations From the Gamma Ray
Observatory Ada Development Team, R. Murphy and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers: Volume III, November 1985

SEL-85-004, Evaluations of Software Technologies: Testingg CLEANROOM, and
Metrics, R. W. Selby, Jr., and V. R. Basili, May 1985

SEL-85-005, Software Verification and Testing, D. N. Card, E. Edwards, F. McGarry,
and C. Antle, December 1985

SEL-85-006, Proceedings of the Tenth Annual Software Engineering Workshop,
December 1985

SEL-86-001, Programmer’s Handbook for Flight Dynamics Software Development,
R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development, E.Seidewitz and
M. Stark, August 1986

SEL-86-003, Flight Dynamics System Software Development Environment (FDS/SDE)
Tutorial, J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Engineering Papers: Volume IV, November 1986
SEL-86-005, Measuring Software Design, D. N. Card et al., November 1986

SEL-86-006, Proceedings of the Eleventh Annual Software Engineering Workshop,
December 1986

SEL-87-001, Product Assurance Policies and Procedures for Flight Dynamics Software
Development, S. Perry et al., March 1987

SEL-87-002, Ada® Style Guide (Version 1.1), E. Seidewitz et al., May 1987

SEL-87-003, Guidelines for Applying the Composite Specification Model (CSM),
W. W. Agresti, June 1987

SEL-87-004, Assessing the Ada® Design Process and Its Implications: A Case Study,
S. Godfrey, C. Brophy, et al., July 1987

SEL-87-009, Collected Software Engineering Papers: Volume V, November 1987

SEL-87-010, Proceedings of the Twelfth Annual Software Engineering Workshop,
December 1987

SEL-88-001, System Testing of a Production Ada Project: The GRODY Study, J. Seigle,
L. Esker, and Y. Shi, November 1988

SEL-88-002, Collected Software Engineering Papers: Volume VI, November 1988

BI-4

10000229
0326/1300

SEL-88-003, Evolution of Ada Technology in the Flight Dynamics Area: Design Phase
Analysis, K. Quimby and L. Esker, December 1988

SEL-88-004, Proceedings of the Thirteenth Annual Software Engineering Workshop,
November 1988

SEL-88-005, Proceedings of the First NASA Ada User’s Symposium, December 1988

SEL-89-002, Implementation of a Production Ada Project: The GRODY Study,
S. Godfrey and C. Brophy, September 1989

SEL-89-003, Software Management Environment (SME) Concepts and Architecture,
W. Decker and J. Valett, August 1989

SEL-89-004, Evolution of Ada Technology in the Flight Dynamics Area: Implementation/
Testing Phase Analysis, K. Quimby, L. Esker, L. Smith, M. Stark, and F. McGarry,
November 1989

SEL-89-005, Lessons Learned in the Transition to Ada From FORTRAN at NASA/
Goddard, C. Brophy, November 1989

SEL-89-006, Collected Software Engineering Papers: Volume VII, November 1989

SEL-89-007, Proceedings of the Fourteenth Annual Software Engineering Workshop,
November 1989 '

SEL-89-008, Proceedings of the Second NASA Ada Users’ Symposium, November 1989

SEL-89-101, Software Engineering Laboratory (SEL) Database Organization and User’s
Guide (Revision 1), M. So, G. Heller, S. Steinberg, K. Pumphrey, and D. Spiegel,
February 1990

SEL-90-001, Database Access Manager for the Software Engineering Laboratory
(DAMSEL) User’s Guide, M. Buhler, K. Pumphrey, and D. Spiegel, March 1990

SEL-90-002, The Cleanroom Case Study in the Software Engineering Laboratory: Project
Description and Early Analysis, S. Green et al., March 1990

SEL-90-003, A Study of the Portability of an Ada System in the Software Engineering Labo-
ratory (SEL), L. O. Jun and S. R. Valett, June 1990

SEL-90-004, Gamma Ray Observatory Dynamics Simulator in Ada (GRODY) Experi-
ment Summary, T. McDermott and M. Stark, September 1990

SEL-90-005, Collected Software Engineering Papers: Volume VIII, November 1990

SEL-90-006, Proceedings of the Fifteenth Annual Software Engineering Workshop,
November 1990

SEL-91-001, Software Engineering Laboratory (SEL) Relationships, Models, and Man-
agement Rules, W. Decker, R. Hendrick, and J. Valett, February 1991

BI-5

10000229
0328/1300

SEL-91-003, Software Engineering Laboratory (SEL) Ada Performance Study Report,
E. W. Booth and M. E. Stark, July 1991

SEL-91-004, Software Engineering Laboratory (SEL) Cleanroom Process Model,
S. Green, November 1991

SEL-91-005, Collected Software Engineering Papers: Volume [X, November 1991

SEL-91-006, Proceedings of the Sixteenth Annual Software Engineering Workshop,
December 1991

SEL-91-102, Software Engineering Laboratory (SEL) Data and Information Policy (Revi-
sion 1), F. McGarry, August 1991

SEL-92-001, Software Management Environment (SME) Installation Guide, D. Kistler,
January 1992

SEL-92-002, Data Collection Procedures for the Software Engineering Laboratory (SEL)
Database, G. Heller, March 1992

SEL-RELATED LITERATURE

4Agresti, W. W,, V. E. Church, D. N. Card, and P. L. Lo, “Designing With Ada for Sat-
ellite Simulation: A Case Study,” Proceedings of the First International Symposium on
Ada for the NASA Space Station, June 1986

2Agresti, W. W, F. E. McGarry, D. N. Card, et al., “Measuring Software Technology,”
Program Transformation and Programming Environments. New York: Springer-Verlag,
1984

1Bailey, J. W,, and V. R. Basili, “A Meta-Model for Software Development Resource
Expenditures,” Proceedings of the Fifth Intemational Conference on Software Engineer-
ing. New York: IEEE Computer Society Press, 1981

8Bailey, J. W,, and V. R. Basili, “Software Reclamation: Improving Post-Development
Reusability,” Proceedings of the Eighth Annual National Conference on Ada Technology,
March 1990

1Basili, V. R, “Models and Metrics for Software Management and Engineering,”
ASME Advances in Computer Technology, January 1980, vol. 1

Basili, V. R., Titorial on Models and Metrics for Software Management and Engineering.
New York: IEEE Computer Society Press, 1980 (also designated SEL-80-008)

3Basili, V. R., “Quantitative Evaluation of Software Methodology,” Proceedings of the
First Pan-Pacific Computer Conference, September 1985

"Basili, V. R., Maintenance = Reuse-Oriented Software Development, University of
Maryland, Technical Report TR-2244, May 1989

BI-6

10000229
0328/1300

TBasili, V. R., Software Development: A Paradigm for the Future, University of Maryland,
Technical Report TR-2263, June 1989

8Basili, V. R,, “Viewing Maintenance of Reuse-Oriented Software Development,”
IEEE Software, January 1990

1Basili, V. R., and J. Beane, “Can the Parr Curve Help With Manpower Distribution
and Resource Estimation Problems?,” Journal of Systems and Software, February 1981,
vol. 2, no. 1

9Basili, V. R., and G. Caldiera, A Reference Architecture for the Component Factory,
University of Maryland, Technical Report TR-2607, March 1991

1Basili, V. R., and K. Freburger, “Programming Measurement and Estimation in the
Software Engineering Laboratory,” Journal of Systems and Software, February 1981,
vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, “Finding Relationships Between Effort and
Other Variables in the SEL,” Proceedings of the International Computer Software and
Applications Conference, October 1985

4Basili, V. R., and D. Patnaik, 4 Study on Fault Prediction and Reliability Assessment in
the SEL Environment, University of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perricone, “Software Errors and Complexity: An Empirical
Investigation,” Communications of the ACM, January 1984, vol. 27, no. 1

1Basili, V. R., and T. Phillips, “Evaluating and Comparing Software Metrics in the Soft-
ware Engineering Laboratory,” Proceedings of the ACM SIGMETRICS Symposium/
Workshop: Quality Metrics, March 1981

3Basili, V.R., and C. L. Ramsey, “ARROWSMITH-P—A Prototype Expert System for
Software Engineering Management,” Proceedings of the IEEE/MITRE Expert Systems
in Government Symposium, October 1985

Basili, V. R., and J. Ramsey, Structural Coverage of Functional Testing, University of
Maryland, Technical Report TR-1442, September 1984

Basili, V. R, and R. Reiter, “Evaluating Automatable Measures for Software Develop-
ment,” Proceedings of the Workshop on Quantitative Software Models for Reliability,
Complexity, and Cost. New York: IEEE Computer Society Press, 1979

5Basili, V. R., and H. D. Rombach, “Tailoring the Software Process to Project Goals
and Environments,” Proceedings of the 9th International Conference on Software Engi-
neering, March 1987

SBasili, V. R., and H. D. Rombach, “T A M E: Tailoring an Ada Measurement Envi-
ronment,” Proceedings of the Joint Ada Conference, March 1987

BI-7

10000229
0328/1300

SBasili, V. R., and H. D. Rombach, “T A M E: Integrating Measurement Into Software
Environments,” University of Maryland, Technical Report TR-1764, June 1987

6Basili, V. R., and H. D. Rombach, “The TAME Project: Towards Improvement-
Oriented Software Environments,” [EEE Transactions on Software Engineering, June .
1988

"Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse: A
Reuse-Enabling Software Evolution Environment, University of Maryland, Technical
Report TR-2158, December 1988

8Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse:
Model-Based Reuse Characterization Schemes, University of Maryland, Technical
Report TR-2446, April 1990

9Basili, V. R., and H. D. Rombach, Support for Comprehensive Reuse, University of
Maryland, Technical Report TR-2606, February 1991

3Basili, V. R.,and R. W. Selby, Jr., “Calculation and Use of an Environment’s Charac-
teristic Software Metric Set,” Proceedings of the Eighth International Conference on Soft-
ware Engineering. New York: IEEE Computer Society Press, 1985

Basili, V. R., and R. W. Selby, Jr., Comparing the Effectiveness of Software Testing Strate-
gies, University of Maryland, Technical Report TR-1501, May 1985

3Basili, V. R., and R. W. Selby, Jr., “Four Applications of a Software Data Collection
and Analysis Methodology,” Proceedings of the NATO Advanced Study Institute, August
1985

5Basili, V. R., and R. Selby, “Comparing the Effectiveness of Software Testing Strate-
gies,” IEEE Transactions on Software Engineering, December 1987

%Basili, V. R.,and R. W. Selby, “Paradigms for Experimentation and Empirical Studies
in Software Engineering,” Reliability Engineering and System Safety,] anuary 1991

4Basili, V.R., R. W. Selby, Jr., and D. H. Hutchens, “Experimentation in Software
Engineering,” IEEE Transactions on Software Engineering, July 1986

ZBasili, V.R.,R. W. Selby, and T. Phillips, “Metric Analysis and Data Validation Across
FORTRAN Projects,” [EEE Transactions on Software Engineering, November 1983

2Basili, V. R., and D. M. Weiss, 4 Methodology for Collecting Valid Software Engineering
Data, University of Maryland, Technical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, “A Methodology for Collecting Valid Software Engi-
neering Data,” IEEE Transactions on Sofiware Engineering, November 1984

1Basili, V. R., and M. V. Zelkowitz, “The Software Engineering Laboratory: Objec-
tives,” Proceedings of the Fifteenth Annual Conference on Computer Personnel Research,
August 1977

BI-8

10000229
0326/1300

Basili, V. R., and M. V. Zelkowitz, “Designing a Software Measurement Experiment,”
Proceedings of the Software Life Cycle Management Workshop, September 1977

IBasili, V. R., and M. V. Zelkowitz, “Operation of the Software Engineering Labora-
tory,” Proceedings of the Second Software Life Cycle Management Workshop, August
1978

1Basili, V. R., and M. V. Zelkowitz, “Measuring Software Development Characteristics
in the Local Environment,” Computers and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, “Analyzing Medium Scale Software Development,”
Proceedings of the Third International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1978

9Booth, E. W, and M. E. Stark, “Designing Configurable Software: COMPASS Imple-
mentation Concepts,” Proceedings of Tri-Ada 1991, October 1991

9Briand, L. C., V. R. Basili, and W. M. Thomas, 4 Pattern Recognition Approach for Soft-
ware Engineering Data Analysis, University of Maryland, Technical Report TR-2672,
May 1991 :

SBrophy, C. E., W. W. Agresti, and V. R. Basili, “Lessons Learned in Use of Ada-
Oriented Design Methods,” Proceedings of the Joint Ada Conference, March 1987

6Brophy, C. E,, S. Godfrey, W. W. Agresti, and V. R. Basili, “Lessons Learned in the
Implementation Phase of a Large Ada Project,” Proceedings of the Washington Ada
Technical Conference, March 1988

2Card, D. N., “Early Estimation of Resource Expenditures and Program Size,”
Computer Sciences Corporation, Technical Memorandum, June 1982

2Card, D. N., “Comparison of Regression Modeling Techniques for Resource Estima-
tion,” Computer Sciences Corporation, Technical Memorandum, November 1982

3Card, D.N., “A Software Technology Evaluation Program,” Annais do XVIII
Congresso Nacional de Informatica, October 1985

3Card, D. N.,and W. W. Agresti, “Resolving the Software Science Anomaly,” The Jour-
nal of Systems and Software, 1987

6Card, D. N., and W. W. Agresti, “Measuring Software Design Complexity,” The Jour-
nal of Systems and Software, June 1988

4Card, D.N., V. E. Church, and W. W. Agresti, “An Empirical Study of Software Design
Practices,” IEEE Transactions on Software Engineering, February 1986

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan, “A Software Engineering
View of Flight Dynamics Analysis System,” Parts I and II, Computer Sciences Corpora-
tion, Technical Memorandum, February 1984

BI-9

10000229
0328/1300

Card,D.N.,, Q. L. Jordan, and V. E. Church, “Characteristics of FORTRAN Modules,”
Computer Sciences Corporation, Technical Memorandum, June 1984

3Card, D.N., E E. McGarry, and G.T. Page, “Evaluating Software Engineering
Technologies,” IEEE Transactions on Software Engineering, July 1987

3Card,D. N., G. T. Page, and F. E. McGarry, “Criteria for Software Modularization,”
Proceedings of the Eighth Intemational Conference on Software Engineering. New York:
IEEE Computer Society Press, 1985

IChen, E., and M. V. Zelkowitz, “Use of Cluster Analysis To Evaluate Software Engi-
neering Methodologies,” Proceedings of the Fifth International Conference on Software
Engineering. New York: IEEE Computer Society Press, 1981

*Church, V.E., D.N. Card, W.W. Agresti, and Q. L. Jordan, “An Approach for
Assessing Software Prototypes,” ACM Software Engineering Notes, July 1986

2Doe:x'ﬂinge:r, C. W, and V. R. Basili, “Monitoring Software Development Through
Dynamic Variables,” Proceedings of the Seventh International Computer Software and
Applications Conference. New York: IEEE Computer Society Press, 1983

Doubleday, D., ASAP: An Ada Static Source Code Analyzer Program, University of
Maryland, Technical Report TR-1895, August 1987 (NOTE: 100 pages long)

SGodfrey, S., and C. Brophy, “Experiences in the Implementation of a Large Ada
Project,” Proceedings of the 1988 Washington Ada Symposium, June 1988

Hamilton, M., and S. Zeldin, 4 Demonstration of AXES for NAVPAK, Higher Order
Software, Inc., TR-9, September 1977 (also designated SEL-77-005)

SJeffery, D. R., and V. Basili, Characterizing Resource Data: A Model for Logical
Association of Software Data, University of Maryland, Technical Report TR-1848, May
1987

6] effery, D. R,, and V. R. Basili, “Validating the TAME Resource Data Model,” Pro-
ceedings of the Tenth International Conference on Software Engineering, April 1988

SMark, L., and H. D. Rombach, A Meta Information Base for Software Engineering,
University of Maryland, Technical Report TR-1765, July 1987

6Mark, L., and H. D. Rombach, “Generating Customized Software Engineering
Information Bases From Software Process and Product Specifications,” Proceedings of
the 22nd Annual Hawaii International Conference on System Sciences, J anuary 1989

’McGarry, E. E.,and W. W. Agresti, “Measuring Ada for Software Development in the
Software Engineering Laboratory (SEL),” Proceedings of the 21st Annual Hawaii
Intemational Conference on System Sciences, January 1988

_ 7McGarry, E, L. Esker, and K. Quimby, “Evolution of Ada Technology in a Production
Software Environment,” Proceedings of the Sixth Washington Ada Symposium
(WADAS), June 1989

BI-10

10000229
0324/1300

3McGarry, F. E., J. Valett, and D. Hall, “Measuring the Impact of Computer Resource
Quality on the Software Development Process and Product,” Proceedings of the
Hawaiian International Conference on System Sciences, January 1985

National Aeronautics and Space Administration (NASA), NASA Software Research
Technology Workshop (Proceedings), March 1980

3Page, G., F. E. McGarry, and D. N. Card, “A Practical Experience With Independent
Verification and Validation,” Proceedings of the Eighth International Computer Software
and Applications Conference, November 1984

SRamsey, C. L., and V. R. Basili, An Evaluation of Expert Systems for Software Engi-
neering Management, University of Maryland, Technical Report TR-1708, September
1986

3Ramsey, J., and V. R. Basili, “Analyzing the Test Process Using Structural Coverage,”
Proceedings of the Eighth International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1985

5Rombach, H. D., “A Controlled Experiment on the Impact of Software Structure on
Maintainability,” JEEE Transactions on Software Engineering, March 1987

8Rombach, H. D., “Design Measurement: Some Lessons Learned,” IEEE Software,
March 1990

9Rombach, H. D., “Software Reuse: A Key to the Maintenance Problem,” Butterworth
Journal of Information and Software Technology, January/February 1991

6Rombach, H. D., and V. R. Basili, “Quantitative Assessment of Maintenance: An
Industrial Case Study,” Proceedings From the Conference on Software Maintenance,
September 1987

6Rombach, H. D., and L. Mark, “Software Process and Product Specifications: A Basis
for Generating Customized SE Information Bases,” Proceedings of the 22nd Annual
Hawaii International Conference on System Sciences, January 1989

TRombach, H. D., and B. T. Ulery, Establishing a Measurement Based Maintenance
Improvement Program: Lessons Learned in the SEL, University of Maryland, Technical
Report TR-2252, May 1989

6Seidewitz, E., “Object-Oriented Programming in Smalltalk and Ada,” Proceedings
of the 1987 Conference on Object-Oriented Programming Systems, Languages, and
Applications, October 1987

S5Seidewitz, E., “General Object-Oriented Software Development: Background and
Experience,” Proceedings of the 2lst Hawaii International Conference on System
Sciences, January 1988

BI-11

10000229
0326/1300

6Seidewitz, E., “General Object-Oriented Software Development with Ada: A Life
Cycle Approach,” Proceedings of the CASE Technology Conference, April 1988

9Seidewitz, E., “Object-Oriented Programming Through Type Extension in Ada 9X,”
Ada Letters, March/April 1991

4Seidewitz, E., and M. Stark, “Towards a General Object-Oriented Software Develop-
ment Methodology,” Proceedings of the First International Symposium on Ada for the
NASA Space Station, June 1986

9Seidewitz, E., and M. Stark, “An Object-Oriented Approach to Parameterized Soft-
ware in Ada,” Proceedings of the Eighth Washington Ada Symposium, June 1991

8Stark, M., “On Designing Parametrized Systems Using Ada,” Proceedings of the
Seventh Washington Ada Symposium, June 1990

7Stark, M. E. and E. W. Booth, “Using Ada to Maximize Verbatim Software Reuse,”
Proceedings of TRI-Ada 1989, October 1989

3Stark, M., and E. Seidewitz, “Towards a General Object-Oriented Ada Lifecycle,”
Proceedings of the Joint Ada Conference, March 1987

8Straub, P. A., and M. V. Zelkowitz, “PUC: A Functional Specification Lénguage for
Ada,” Proceedings of the Tenth International Conference of the Chilean Computer Science
Society, July 1990

"Sunazuka, T, and V. R. Basili, Integrating Automated Support for a Software Manage-
ment Cycle Into the TAME System, University of Maryland, Technical Report TR-2289,
July 1989

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL Software Develop-
ment Data, Data and Analysis Center for Software, Special Publication, May 1981

Tumner, C., G. Caron, and G. Brement, NASA/SEL Data Compendium, Data and
Analysis Center for Software, Special Publication, April 1981

SValett,J. D.,and F. E. McGarry, “A Summary of Software Measurement Experiences
in the Software Engineering Laboratory,” Proceedings of the 21st Annual Hawaii
International Conference on System Sciences, January 1988

3Weiss, D. M., and V. R. Basili, “Evaluating Software Development by Analysis of
Changes: Some Data From the Software Engineering Laboratory,” IEEE Transactions
on Software Engineering, February 1985

SWu, L., V. R. Basili, and K. Reed, “A Structure Coverage Tool for Ada Software Sys-
tems,” Proceedings of the Joint Ada Conference, March 1987

1Zelkowitz, M. V., “Resource Estimation for Medium-Scale Software Projects,” Pro-
ceedings of the Twelfth Conference on the Interface of Statistics and Computer Science.
New York: IEEE Computer Society Press, 1979

BI-12

10000228
0328/1300

2Zelkowitz, M. V, “Data Collection and Evaluation for Experimental Computer
Science Research,” Empirical Foundations for Computer and Informarion Science (Pro-
ceedings), November 1982

6Zelkowitz, M. V., “The Effectiveness of Software Prototyping: A Case Study,” Pro-
ceedings of the 26th Annual Technical Symposium of the Washington, D. C., Chapter of the
ACM, June 1987

6Zelkowitz, M. V,, “Resource Utilization During Software Development,” Journal of
Systems and Software, 1988

8Zelkowitz, M. V,, “Evolution Towards Specifications Environment: Experiences With
Syntax Editors,” Information and Software Technology, April 1990

Zelkowitz, M. V,, and V. R. Basili, “Operational Aspects of a Software Measurement
Facility,” Proceedings of the Software Life Cycle Management Workshop, September 1977

BI-13

10000229
0328/1300

NOTES:

IThis article also appears in SEL-82-004, Collected Software Engineering Papers:
Volume I, July 1982.

*This article also appears in SEL-83-003, Collected Software Engineering Papers:
Volume II, November 1983.

3This article also appears in SEL-85-003, Collected Sofiware Engineering Papers:
Volume ITI, November 1985.

“This article also appears in SEL-86-004, Collected Software Engineering Papers:
Volume IV, November 1986.

SThis article also appears in SEL-87-009, Collected Software Engineering Papers:
Volume V, November 1987.

SThis article also appears in SEL-88-002, Collected Software Engineering Papers:
Volume VI, November 1988.

"This article also appears in SEL-89-006, Collected Sofiware Engineering Papers:
Volume VII, November 1989.

8This article also appears in SEL-90-005, Collected Software Engineering Papers:
Volume VIII, November 1990.

This article also appears in SEL-91-005, Collected Software Engineering Papers:
Volume I[X, November 1991.

BI-14

10000229
0326/1300

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response. including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jetferson
Davis Highway, Sulte 1204, Arfington, VA 22202-4302, and 1o the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

March 1992

CR189295

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

NEERING LABORATORY (SEL) DATABASE

DATA COLLECTION PROCEDURES FOR THE SOFTWARE ENGI-

6. AUTHO

R(S
NASA, I}I\EIV. OF MD, COMPUTER SCIENCES CORP.

5. FUNDING NUMBERS

SEL 91 002

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES)
SAME AS #6

8. PEFORMING ORGANIZATION
REPORT NUMBER

CR189295

9. SPONSORING / MONITORING ADGENCY NAME(S) AND ADDRESS (ES)

National Aeronautics and Space Administration
Goddard Space Flight Center, Greenbelt, MD 20771

10. SPONSORING / MONITORING
ADGENCY REPORT NUMBER

CR189295

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATMENT

SINGLE COPIES CAN BE OBTAINED FROM CODE 552/GSFC

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

tion and submission of SEL data collection forms.

This document is a guidebook to collecting software engineering data on software development and mainte-
nance efforts, as practiced in the Software Engineering Laboratory (SEL). It supersedes the document entitled
Data Collection Procedures for the Rehosted SEL Database, number SEL 87 008 in the SEL series, which
was published in October 1987. It presents an overview of SEL data collection and the types of data the SEL
collects. It then presents procedures to be followed on software development and maintenance projects in the
Flight Dynamics Division (FDD) of Goddard Space Flight Center (GSFC) for collecting data in support of
SEL software engineering research activities. These procedures include detailed instructions for the comple-

14. SUBJECT TERMS

Development Life Cycle-Startup Form/ Estimates Form; Personnel Resources and
Cleanroom Resources; Event Data; Project Completion; Data Collection-Maintenance

15. NUMBER OF PAGES
Agp. \00

16. PRICE CODE

OF REPORT OF THIS PAGE
Unclassified Unclassified

OF ABSTRACT
Unclassified

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANS| Std. 239.18
298-102

